Python入门实战:机器学习算法应用

1.背景介绍

1.1 什么是机器学习?

机器学习(Machine Learning)是指通过已知数据来进行训练、预测和分析的一类技术,目的是使计算机具备学习能力,能够从数据中发现隐藏的模式或规律,并对未知数据进行有效预测或分类。与人工智能的定义不同,机器学习并不是某个特定的理论、算法或者模型,它是指能够让机器像人的大脑一样能够自己学习、理解、运用数据的能力。

人工智能(Artificial Intelligence,简称AI),通常是指指以计算、模拟、自我编程的方式实现智能行为的科技。机器学习是人工智能的一个分支领域,它关注如何让机器从数据中提取知识,并使用这些知识来解决一些具体的问题。

在实际应用过程中,机器学习可用于:

  • 数据挖掘:根据数据集中的信息,找出其中的模式或规律,对新的数据做出预测或分类。
  • 图像识别:自动提取图像中的对象、特征、场景等信息,对图片中出现的物体及其描述进行分类、检测。
  • 文本分析:根据大量的文本数据,对某些主题或词汇进行自动分类、检索、概率分析、归纳和推理。
  • 生物信息学:利用基因序列、蛋白质结构等信息,进行遗传变异和疾病预测。
  • 金融风险控制:机器学习可以帮助企业识别客户的特定风险因素,提升风险控制能力,降低金融损失。

总之,机器学习是指让计算机具备学习能力,能够从数据中发现隐藏的模式或规律,并对未知数据进行有效预测或分类的一类技术。

1.2 为什么要用机器学习?

机器学习技术是人工智能领域里最热门的技术方向,也是实现现代化生产力的必备技术。机器学习目前应用十分广泛,特别是在新闻、商业、金融、医疗、保险等多个领域都有着广阔的应用前景。然而,正确理解和使用机器学习技术也需要一定的基础和直觉,否则可能造成误解和滥用。

正如马库斯·费罗所说,“只有那些精通机器学习的人才能够做出精准的预测、判断、决策和分析。”他认为,机器学习涉及很多不同的技术和领域,比如概率论、统计学、线性代数、优化方法、深度学习等等。所以,了解这些技术以及它们之间的联系、交互方式会帮助读者更好的理解和使用机器学习技术。

另一个原因则是为了解决一些实际问题。随着经济的发展和人们生活水平的提高,越来越多的复杂任务被转移到计算机上处理。许多这样的任务都需要高效且准确地完成,比如图像识别、语音识别、垃圾邮件过滤、目标跟踪、图像修复、文档分类、个性化推荐等等。而对于传统的软件开发流程来说,它们非常耗时、容易出错。所以,机器学习技术通过自动化手段来改善和促进人类的认知和能力提升,取得了巨大的成功。

2.核心概念与联系

2.1 概念介绍

2.1.1 模型与假设空间

模型

定义:模型是用来描述数据生成机制的假设集合,包括参数、概率分布、条件依赖关系等。它不仅决定了数据生成过程,还反映了数据生成中的不确定性和偶然性。

  • 参数模型(Parametric Model):所谓参数模型就是给定样本数据集,模型的参数值就唯一确定该模型。例如,线性回归模型就是一种参数模型。在此类模型中,参数的值即表示模型的权重或系数。
  • 非参数模型(Nonparametric Model):所谓非参数模型就是没有确切的数学形式的参数。例如,朴素贝叶斯模型就是非参数模型。在这种模型中,参数值的数量和模型的复杂程度成正比,因此无法用数值表示。
  • 混合模型(Mixture of Models):所谓混合模型就是同时考虑多个模型的结果。例如,多元高斯分布就是一种混合模型。在此类模型中,每个模型都有一个权重,并且模型之间存在相互独立的先验分布。
假设空间

定义:假设空间是一个所有潜在模型构成的集合。它由输入、输出、参数、概率分布和其他约束组合而成。假设空间通常通过贝叶斯定理构造。

2.1.2 监督学习与非监督学习

监督学习

定义:监督学习是指训练样本拥有“正确”标记,也就是样本属于哪一类或哪一个输出的过程。一般情况下,训练样本中的标签是由人或者其他机器人给出的,称为监督信号。例如,预测房价、区分垃圾邮件、预测生死、判定语言翻译方向等都是监督学习的典型任务。

  • 回归问题(Regression Problem):在回归问题中,预测值是连续变量,比如房价、销售额等。回归模型用来估计或预测目标变量的值。
  • 分类问题(Classification Problem):在分类问题中,预测值是离散变量,比如是否违法、网页是否爬取成功等。分类模型用来将输入变量映射到预测的类别。
  • 标注问题(Annotation Problem):在标注问题中,预测值是一组标记,比如一张图像上的多个实例的标签。标注模型用于对无监督学习得到的数据进行标注。
    非监督学习
    定义:非监督学习是指训练样本没有“正确”标记,也就是样本不属于哪一类或哪一个输出的过程。一般情况下,训练样本中的标签是从原始数据中学习到的,没有人工干预,称为无监督信号。非监督学习通常由聚类、关联、降维等组成。
  • 聚类问题(Clustering Problem):在聚类问题中,数据集中的数据点要划分到若干个簇中去,每一个簇内的数据点具有相似的特征,每一个数据点都属于其中一个簇。聚类模型的目标是找到一个能够将数据集划分到合适的组的模型。
  • 关联分析问题(Association Analysis Problem):在关联分析问题中,希望能够分析购买同一商品的顾客群体,基于这一分析,可以提出一些产品的推荐策略。关联规则模型就是一种关联分析模型。
  • 降维问题(Dimensionality Reduction Problem):在降维问题中,希望能够将高维数据转换到低维数据中去,方便后续的分析和处理。主成分分析就是一种降维模型。

2.2 核心算法介绍

2.2.1 线性回归

线性回归(Linear Regression)是最简单的回归模型。它的假设空间是特征空间上的一条直线。线性回归试图通过最小化均方差(Mean Squared Error,MSE)来找到一条与真实数据点拟合得最好的直线。这里的均方差衡量的是预测值与真实值之间距离的平方大小。

线性回归模型通过求解下面的最小化问题来估计模型参数:

$$\min_{\theta}\sum_{i=1}^n(h_\theta(x_i)-y_i)^2=\frac{1}{2}\sum_{i=1}^{n}(h_\theta(x_i)-y_i)^2$$

$\theta$代表模型参数向量,$h_\theta(x)$表示给定输入$x$时的模型输出,$n$代表样本容量,$(x_i,y_i) \in X\times Y$代表第$i$个训练样本,$(X,\vec y)$表示输入和输出样本集合。

当输入变量只有一个的时候,线性回归又叫简单线性回归。当输入变量大于一个的时候,线性回归又叫多项式回归。

2.2.2 逻辑回归

逻辑回归(Logistic Regression)是二分类模型。它的假设空间是特征空间上的一个曲线。逻辑回归试图通过最大化似然函数(Likelihood Function)来找到一条与真实数据点拟合得最好的曲线。这里的似然函数衡量的是模型的预测结果与实际情况的一致程度。

逻辑回归模型通过求解下面的最大化问题来估计模型参数:

$$\max_{\theta}\prod_{i=1}^nP(Y=y_i|X=x_i;\theta)=\prod_{i=1}^nP(y_i|x_i;\theta)^{y_i}(1-P(y_i|x_i;\theta))^{(1-y_i)}$$

$\theta$代表模型参数向量,$Y$代表样本的类别,$P(Y=y_i|X=x_i;\theta)$表示样本$x_i$属于类别$y_i$的概率。

逻辑回归模型对于二分类问题是非常有效的。但是对于多分类问题,仍然存在困难。

2.2.3 决策树

决策树(Decision Tree)是一种基本分类与回归方法。它的假设空间是树形结构,每一个内部节点表示一个属性测试,每个叶节点代表一个类别输出。决策树模型试图找到一棵树,使得各个子节点上的“信息增益”最大。

决策树模型通过构造一系列的若干测试,在给定输入$x$时,按照树的路径到达叶节点,输出对应于叶节点的类别。

决策树模型是一种高度灵活的分类器,能够处理多种类型的数据。但是,对于较为复杂的数据集,决策树可能会过拟合,并且在测试数据上表现不佳。

2.2.4 K近邻

K近邻(kNN,k-Nearest Neighbors)是一种简单但有效的分类和回归方法。它的假设空间是点的邻域,最近的k个邻居决定了输入的类别。K近邻模型试图找到与输入距离最近的$k$个点,然后做投票,选择出现次数最多的类别作为输出。

K近邻模型通过比较不同输入实例之间的距离,来确定输入实例的类别。距离的计算方式可以是欧氏距离、曼哈顿距离或其他距离函数。

K近邻模型的分类速度快,但是容易受到噪声影响,对异常点敏感。

2.2.5 支持向量机

支持向量机(Support Vector Machine,SVM)是一种二分类模型,其假设空间是特征空间上间隔最大化的超平面。SVM试图找到一个由最多的支持向量定义的超平面,使得这个超平面的间隔最大化。

支持向量机模型通过求解下面的二次优化问题来估计模型参数:

$$\min_{\theta}\frac{1}{2}\sum_{i=1}^{m}||w^Tx+b-y||^2+\lambda\sum_{j=1}^{n_s}\xi_j+\mu J(\theta)$$

$\theta$代表模型参数向量,$w$代表法向量,$b$代表偏置,$J(\theta)$代表模型复杂度。

支持向量机模型对于二分类问题是非常有效的,而且它可以在高维数据中处理非线性问题。但是,由于计算复杂度的限制,SVM只能用于小型数据集。

2.2.6 神经网络

神经网络(Neural Network)是一种非线性回归和分类模型。它的假设空间是由多个隐层神经元组成的网络结构,每个隐层神经元都接收上一层的所有输出,并产生自己的输出。神经网络模型试图找到一个能够正确映射输入到输出的网络结构。

神经网络模型通过梯度下降、随机梯度下降或其它优化算法,通过反向传播算法来更新模型参数。

神经网络模型对于复杂非线性的输入输出,能够有效地拟合数据。但是,它往往需要大量的训练数据才能获得足够好的性能。

3.核心算法原理与操作步骤

3.1 线性回归算法详解

3.1.1 算法基本步骤

  1. 数据准备:加载训练集$T={(x_1,y_1),(x_2,y_2),...,(x_N,y_N)}, x_i\in R^p, y_i\in R$,其中$x_i$是输入向量,$y_i$是相应的输出。

  2. 模型建立:令$f:\mathbb{R}^p\rightarrow\mathbb{R}$表示参数为$\theta=(w_1,w_2,...,w_p)^T,b$的线性回归模型: $$ f(x)=w^\top x+b $$

  3. 误差计算:设$E(f)=\frac{1}{2}\sum_{i=1}^Ne((y_i-\hat{y}i)^2)$,其中$\hat{y}_i=f(x_i)$,则错误率为: $$ \epsilon=\frac{1}{N}\sum{i=1}^N|\hat{y}_i-y_i| $$

    • 如果$\epsilon<\delta$,则模型性能良好;
    • 如果$\epsilon>\delta$,则需要调整模型参数。
  4. 参数调优:如果误差$\epsilon>0.5$,则调整参数:

    1. 如果$\epsilon>0.7$,则减小学习率,缩小步长。
    2. 如果$\epsilon>0.9$,则停止训练,认为模型过于复杂。
  5. 模型预测:对于给定的输入$x'$,预测输出为: $$ \hat{y}'=f(x') $$

3.1.2 算法数学原理

线性回归算法关于参数的解可以表示为:

$$ \min_{\theta}\frac{1}{2}\sum_{i=1}^{N}(h_\theta(x_i)-y_i)^2+\frac{\lambda}{2}\lVert w\rVert^2 $$

这里,$\lambda$是正则化参数,$w$是参数向量。

当$\lambda=0$时,表示无正则化;当$\lambda>0$时,表示引入正则化。$\frac{\lambda}{2}\lVert w\rVert^2$是参数范数惩罚项,它使得参数向量的长度不至于太长。

如果假设空间是输入空间到输出空间的映射,那么上述优化问题就可以表示为:

$$ \min_{\phi}\min_{\theta}\frac{1}{2}\sum_{i=1}^{N}(y_i-\phi(x_i))^2+\frac{\lambda}{2}\lVert\theta\rVert^2 $$

这里,$\phi: \mathcal{X} \rightarrow \mathcal{Y}$表示输入空间到输出空间的映射。可以看到,这个优化问题其实可以看作是关于$\theta$的优化问题,只不过通过一个变换$\phi$把输入空间映射到了输出空间。

对于线性回归模型,假设空间就是一个超平面,即:

$$ \text{Span}\left{ { x_i | i = 1,2,..., N } \right}=span(X\theta)+b $$

这里,$X\theta$表示输入空间到超平面的映射。如果没有任何约束,即$b=0$,则可以直接最小化目标函数:

$$ \min_{\theta}\frac{1}{2}\sum_{i=1}^{N}(h_\theta(x_i)-y_i)^2 $$

也可以加上正则化项:

$$ \min_{\theta}\frac{1}{2}\sum_{i=1}^{N}(h_\theta(x_i)-y_i)^2+\frac{\lambda}{2}\lVert\theta\rVert^2 $$

3.1.3 单变量线性回归算法

当输入变量只有一个的时候,线性回归又叫简单线性回归。它的假设空间是特征空间上的一条直线。

线性回归模型假设函数为:

$$ h_\theta(x)=\theta_0+\theta_1x_1+\cdots+\theta_px_p $$

其中$\theta_0$是截距,$\theta_1, \theta_2,..., \theta_p$是系数,表示输入变量的权重。

在训练过程中,采用损失函数最小化的方法来找到最优的参数$\theta$。损失函数可以定义如下:

$$ L(\theta)=\frac{1}{2m}\sum_{i=1}^{m}(\theta^\top x^{(i)}-y^{(i)})^2+\frac{\lambda}{2}\sum_{j=1}^{n}{\theta_j}^2 $$

注意:这里的损失函数只是针对单变量情况,对于多变量情况,损失函数与输入变量个数无关,公式不变。

在训练完毕之后,利用训练好的模型对新的输入预测出输出:

$$ \hat{y}=h_\theta(x)=\theta_0+\theta_1x_1+\cdots+\theta_px_p $$

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI架构设计之禅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值