大语言模型在情感分析中的应用
关键词:大语言模型、情感分析、自然语言处理、深度学习、transformer、BERT、GPT
1. 背景介绍
情感分析是自然语言处理(NLP)领域中的一个重要任务,它旨在从文本中识别、提取和量化情感倾向。随着社交媒体、电子商务和在线评论的普及,情感分析在商业智能、市场研究、舆情监测等领域的应用日益广泛。传统的情感分析方法主要依赖于规则基础和机器学习算法,但这些方法往往受限于手工特征工程和领域知识的局限性。
近年来,以Transformer为基础架构的大语言模型(Large Language Models,LLMs)在各种NLP任务中取得了突破性进展,包括情感分析。这些模型凭借其强大的语言理解和生成能力,为情感分析带来了新的机遇和挑战。本文将深入探讨大语言模型在情感分析中的应用,包括其核心概念、算法原理、数学模型、实践案例以及未来发展趋势。
2. 核心概念与联系
在深入探讨大语言模型在