哈密尔顿蒙特卡罗(HMC)原理与代码实战案例讲解
作者:禅与计算机程序设计艺术
1. 背景介绍
1.1 蒙特卡罗方法概述
蒙特卡罗方法是一种随机模拟方法,它利用随机抽样的方式来估计问题的解。其基本思想是通过生成大量的随机样本,并根据这些样本的统计特性来推断目标量的值。蒙特卡罗方法广泛应用于各种领域,包括物理、化学、金融、工程等。
1.2 马尔科夫链蒙特卡罗方法
马尔科夫链蒙特卡罗方法 (MCMC) 是一种特殊的蒙特卡罗方法,它利用马尔科夫链来生成样本。马尔科夫链是一种随机过程,其未来状态只取决于当前状态,而与过去状态无关。MCMC 方法通过构建一个马尔科夫链,使其平稳分布收敛到目标分布,从而实现对目标分布的采样。
1.3 哈密尔顿蒙特卡罗方法的优势
哈密尔顿蒙特卡罗 (HMC) 方法是一种高效的 MCMC 方法,它利用哈密顿动力学来提高采样效率。与传统的 MCMC 方法相比,HMC 方法具有以下优势:
- 更高的采样效率: HMC 方法可以更快地探索目标分布,从而提高采样效率。
- 更强的探索能力: HMC 方法可以更容易地跳出局部最优解