文章目录
0 前言
本文是深度学习模型部署框架的第二篇,更多部署框架可以查看本专栏的其他文章。
1 简介
概念:TensorFlow Lite 是TensorFlow在移动和嵌入式设备上的轻量级推理框架,专门针对资源受限的环境进行了优化,以便在手机、嵌入式设备上运行深度学习模型。
优势:缩减了模型的大小和功耗,适合嵌入式等资源受限的设备。
坑点:tfl 目前主要支持 cnn 相关的算子 ,对 rnn 等其他网络中的算子还没有很好的支持。对自家的tf框架支持比较好,对于其他框架支持不佳。
2 模型准备
2.1 导出模型为tfl格式
- python api(推荐):tf.lite.TFLiteConverter.from_saved_model()
import tensorflow as tf
# 转换模型
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir) # SavedModel目录的路径
tflite_model = converter.convert()
# 这里可以添加其他操作,比如量化、自定义tf操作支持等
# 保存TF Lite模型
with open('model.tflite', 'wb') as f:
f.write(tflite_model)
- 命令行工具:tflite_convert
$ tflite_convert --help
`--output_file`. Type: string. Full path of the output file.
`--saved_model_dir`. Type: string. Full path to the SavedModel directory.
`--keras_model_file`. Type: string. Full path to the Keras H5 model file.
- python库,可能不适用于某些特定类型的ONNX模型,参考onnx2tflite
from onnx2tflite import onnx_converter
res = onnx_converter(
onnx_model_path = "/content/denoiser_model_fixed.onnx",
need_simplify = True,
output_path = "./models/",
target_formats = ['tflite'],
)
- onnx->tf ,参考onnx_tf
# onnx_tf
import onnx
from onnx_tf.backend import prepare
onnx_model_path = "/content/denoiser_model_fixed.onnx"
onnx_model = onnx.load(onnx_model_path)
tf_rep = prepare(onnx_model)
tf_rep.export_graph("/content/denoiser_model.pb")
- 注意,如果要将其他格式的模型转为tfl,需要other format->onnx->tf->tfl,主要难点在于onnx->tf
2.2 导出时注意事项
- 动态形状的支持,tf转tflite时,由于tf.TensorListReserve操作需要在转换过程中具有静态的element_shape,但原生模型是动态的,所以在TensorFlow Lite 转换器中启用选择性TF操作支持,通过设置converter.target_spec.supported_ops = [ tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS ]实现。这里只是提到一个我实践中遇到的案例,更多的操作可以自定义。
- 环境配置:转换模型时环境的配置很容易出错,目前实践成功的环境配置为tensorflow=2.10.0,tensorflow-probability=0.16.0,protobuf=3.20.3,太低或太高会报错。
- 模型的opset版本:转onnx时,opset_version的设置会影响后续的过程,最终设置opset_version=12可以正常运行
- 当模型比较小的时候,导出为tfl时需要仔细验证模型前后的输出误差,一般来说模型越小,转换以为tfl后输出的误差越大,如果对误差不能接受,可以选择更保守一些的量化方案,如float16量化。