@staticmethod
def get_rnn_type(rnn_type, rnn_act=None):
"""Get recurrent layer and cell type"""
if rnn_type == 'RNN':
rnn = partial(nn.RNN, nonlinearity=rnn_act)
rnn_cell = partial(nn.RNNCell, nonlinearity=rnn_act)
else:
rnn = getattr(nn, rnn_type)
rnn_cell = getattr(nn, rnn_type + 'Cell')
return rnn, rnn_cell
@staticmethod
在 Python 中,@staticmethod
是一个装饰器,用于将一个方法定义为静态方法。静态方法不接收类或实例的引用作为第一个参数,也就是说,它们不依赖于类或实例的数据。这使得静态方法可以像普通函数一样被调用,不需要类的实例。
以下是 @staticmethod
的一些关键点:
- 不需要实例化:静态方法不需要类的实例即可调用,可以直接通过类名访问。
- 不访问类或实例的数据:静态方法内部不能访问
self
或cls
,即不能访问类的属性或实例的属性。 - 使用场景:当你想在类中定义一个与类相关但不需要类或实例数据的功能时,可以使用静态方法。
示例:
class MyClass:
@staticmethod
def my_static_method():
print("This is a static method.")
# 调用静态方法
MyClass.my_static_method()
在这个例子中,my_static_method
是一个静态方法,可以通过 MyClass
直接调用,而不需要创建 MyClass
的实例。
与类方法的区别:
- 类方法 (
@classmethod
):类方法需要类的引用作为第一个参数,通常用于访问或修改类属性。 - 静态方法 (
@staticmethod
):静态方法不需要任何引用作为第一个参数,通常用于实现与类相关但不需要类或实例数据的功能。
静态方法在 Python 类中非常有用,特别是在你想要组织代码或将功能与类相关联但又不想或不需要与类的实例状态耦合时。
partial函数
partial
函数是 Python 标准库 functools
模块中的一个工具函数,它可以用来“冻结”函数的一个或多个参数,从而创建一个新的函数,这个新函数在调用时会用已提供的参数和新传入的参数去调用原始函数。
基本用法:
partial
函数的基本语法如下:
functools.partial(func, /, *args, **keywords)
func
: 要部分应用的原始函数。*args
: 需要冻结的参数列表。**keywords
: 需要冻结的关键字参数字典。
特点:
partial
返回一个新的partial
对象,这个对象可以被用来调用原始函数func
,同时已经固定的参数会作为调用的一部分。partial
对象可以接收新的参数,这些参数会覆盖通过partial
函数提供的参数。
示例:
假设我们有一个函数 f(a, b, c)
,我们想要创建一个新的函数,它使用 a=1
和 b=2
作为默认参数:
from functools import partial
def f(a, b, c):
return a + b + c
# 创建一个新的函数,其中 a 和 b 已经被固定
p = partial(f, 1, b=2)
# 现在调用 p,只需要传入 c 的值
result = p(c=3) # f(1, 2, 3) 被调用,返回结果 6
在这个例子中,p
是一个新的函数,它在调用时会将 1
作为 a
的值,2
作为 b
的值,然后将 c
的值作为参数传递给原始函数 f
。
partial
函数在很多情况下都很有用,特别是在需要对函数进行柯里化(curryization)或在类中固定某些参数时。它可以使代码更加灵活和可重用。
getattr
rnn = getattr(nn, rnn_type)
: 使用 getattr
函数从 nn
模块中获取与 rnn_type
相对应的类。例如,如果 rnn_type
是 'LSTM'
,那么 rnn
将被赋值为 nn.LSTM
类。
getattr
是 Python 的内置函数,用于获取对象的属性值。当你想要访问对象的属性,而这个属性的名字是一个字符串时,getattr
就非常有用。这个函数提供了一种动态访问属性的方法。
edict
from easydict import EasyDict as edict
config = edict(config)
在这段代码中,config
是一个通过 edict
转换的配置对象。edict
是一个字典的封装,它允许字典的键以点符号(.
)的方式访问,类似于访问对象的属性。这种特性使得配置字典的使用更加方便和直观。
解释:
-
config
: 这是一个字典,通常用于存储配置参数。在深度学习框架中,配置字典用于存储模型的超参数或训练过程中的其他设置。 -
edict(config)
: 这可能是一个自定义的函数或类,它接收一个字典config
作为参数,并返回一个edict
对象。edict
对象提供了一种方便的方式来访问字典中的值,就像它们是对象的属性一样。
示例:
假设你有一个配置字典 config
,如下所示:
config = {
'learning_rate': 0.001,
'batch_size': 64,
'model': {
'type': 'CNN',
'layers': ['Conv2D', 'MaxPooling', 'Dense']
}
}
如果你使用 edict
来转换这个字典,你可以像这样访问它的值:
config = edict(config)
print(config.learning_rate) # 输出: 0.001
print(config.model.type) # 输出: CNN
或者使用点符号:
print(config.learning_rate) # 等价于上面的输出
print(config.model.type) # 等价于上面的输出
self.loss = {'MSE': MSELoss(),
'MAE': MAELoss(),
'MSEAUC': MSEAUCLoss(),
'MAEAUC': MAEAUCLoss()}[self.config.loss]
-
self.loss
: 这是当前类的一个实例属性,用于存储损失函数的实例。 -
字典定义:创建了一个字典,包含了四种不同的损失函数,每种损失函数都通过其类名后跟括号(调用构造函数)来实例化:
'MSE'
: 均方误差损失函数(Mean Squared Error Loss)。'MAE'
: 平均绝对误差损失函数(Mean Absolute Error Loss)。'MSEAUC'
: 均方误差和AUC(Area Under the Curve)组合的损失函数。'MAEAUC'
: 平均绝对误差和AUC组合的损失函数。
-
self.config.loss
: 这假设是self.config
字典中的一个键,它的值决定了使用哪种损失函数。例如,如果self.config.loss
的值是'MSE'
,那么self.loss
将被设置为MSELoss()
的一个实例。 -
self.loss = {'MSE': MSELoss(), ...}[self.config.loss]
: 这行代码使用self.config.loss
的值作为字典的键来索引损失函数字典,从而获取对应的损失函数实例,并将其赋值给self.loss
。
这种动态选择损失函数的方法使得代码更加灵活,因为你可以根据运行时的配置来改变损失函数,而不需要硬编码损失函数的选择。
tqdm
tqdm_batch = tqdm(self.data_loader.train_loader, total = self.data_loader.train_iterations,
desc ="Epoch-{}-".format(self.current_epoch))
这段代码使用了 tqdm
库来创建一个进度条,用于跟踪 self.data_loader.train_loader
在训练过程中的进度。tqdm
是一个快速、可扩展的Python进度条库,可以在长循环中添加一个进度提示信息,用户只需要封装任意的迭代器 tqdm(iterator)
。
参数解释:
self.data_loader.train_loader
: 这应该是一个迭代器,通常是 PyTorch 的DataLoader
对象,用于生成训练数据批次。total=self.data_loader.train_iterations
: 这个参数设置了进度条的总长度。self.data_loader.train_iterations
应该是一个整数,表示训练数据集的总批次数。desc="Epoch-{}-".format(self.current_epoch)
: 这是进度条前的描述文本,通过格式化字符串"Epoch-{}-"
来显示当前的训练周期(epoch)。self.current_epoch
是一个变量,表示当前训练的周期数。
NAN
在编程和数据处理中,NAN
表示“不是一个数字”(Not a Number),它是一个特殊的浮点数值,用于表示某些无法表示为常规数字的情况。例如,在进行数学运算时,某些操作可能会产生无定义的结果,如:
- 0除以0(
0/0
) - 负数的对数(
log(negative number)
) - 无穷大或负无穷大的奇数次幂(例如,
inf**0.5
或-inf**0.5
)
在不同的编程语言和库中,NAN
可能有不同的表示方法,但在 Python 中,你可以使用 float('nan')
来创建一个 NAN
值,或者使用 NumPy 库中的 numpy.nan
:
import numpy as np
nan_value = float('nan')
# 或者
nan_value = np.nan
value = np.nan
is_nan = np.isnan(value) # 返回 True
在机器学习和深度学习中,NAN
值可能会导致模型训练过程中的问题,如梯度爆炸或不稳定的优化。因此,在训练之前清理数据和在训练过程中监控 NAN
值是非常重要的。
self.optimizer.zero_grad()
cur_tr_loss.backward()
self.optimizer.step()
这段代码是在使用 PyTorch 框架进行神经网络训练时的标准步骤,涉及梯度的归零、反向传播和优化器的步进。以下是每个步骤的详细解释:
-
self.optimizer.zero_grad()
:- 这个函数用于清除(归零)当前优化器中的所有梯度。在 PyTorch 中,梯度默认是累加的,因此每次进行梯度下降之前,需要先清除之前的梯度,以避免它们对当前迭代的更新产生影响。
-
cur_tr_loss.backward()
:- 这行代码执行反向传播(Backpropagation)。
cur_tr_loss
是当前批次(batch)的损失值,调用其backward()
方法会计算损失相对于网络参数的梯度。这些梯度是使用链式法则从损失值反向传播回网络的每一层得到的。
- 这行代码执行反向传播(Backpropagation)。
-
self.optimizer.step()
:- 在反向传播完成后,调用优化器的
step()
方法会根据计算得到的梯度更新网络的参数。优化器使用其配置的优化算法(如 SGD、Adam 等)来调整参数,目的是最小化损失函数。
- 在反向传播完成后,调用优化器的
完整的训练步骤:
通常,这些步骤是神经网络训练循环的一部分,代码可能如下所示:
for data, target in train_loader: # 假设 train_loader 是你的训练数据加载器
self.optimizer.zero_grad() # 清除旧梯度
output = self.model(data) # 前向传播,获取模型输出
loss = self.criterion(output, target) # 计算损失
cur_tr_loss = loss
cur_tr_loss.backward() # 反向传播,计算梯度
self.optimizer.step() # 使用优化器根据梯度更新参数
def download_url(url, save_path, chunk_size = 128):
""" Download data util function"""
r = requests.get(url, stream=True)
with open(save_path, 'wb') as fd:
for chunk in r.iter_content(chunk_size = chunk_size):
fd.write(chunk)
这段代码定义了一个名为 `download_url` 的函数,用于从一个给定的 URL 下载数据并保存到本地文件。这个函数使用了 Python 的 `requests` 库来处理 HTTP 请求,并以分块的方式写入文件,这有助于节省内存,特别是对于大文件的下载。以下是函数的详细解释:
def download_url(url, save_path, chunk_size=128):
url
: 要下载数据的 URL 地址。save_path
: 保存下载数据的本地文件路径。chunk_size
: 可选参数,定义了每次迭代写入文件的数据块大小,默认为 128 字节。
函数功能
-
发送 HTTP GET 请求:
- 使用
requests.get(url, stream=True)
发起一个 GET 请求。stream=True
参数指示requests
库以流的方式处理响应,而不是一次性下载整个文件。
- 使用
-
打开本地文件:
- 使用
open(save_path, 'wb')
打开一个文件用于写入,'wb'
模式表示以二进制模式写入。
- 使用
-
迭代内容:
- 使用
r.iter_content(chunk_size=chunk_size)
迭代响应内容。这个迭代器按指定的chunk_size
分块产生数据。
- 使用
-
写入文件:
- 在
for
循环中,每个chunk
(数据块)被写入到文件中。fd.write(chunk)
将数据块写入到之前打开的文件。
- 在
-
资源清理:
- 文件和请求的资源会在
with
语句和循环结束后自动关闭和清理。
- 文件和请求的资源会在