哇库~又学到新东西了 题源
题目描述
一个如下的 6×6 的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。
上面的布局可以用序列 2 4 6 1 3 5 来描述,第 i 个数字表示在第 i 行的相应位置有一个棋子,如下:
行号 1 2 3 4 5 6
列号 2 4 6 1 3 5
这只是棋子放置的一个解。请编一个程序找出所有棋子放置的解。
并把它们以上面的序列方法输出,解按字典顺序排列。
请输出前 33 个解。最后一行是解的总个数。输入格式
一行一个正整数 n,表示棋盘是 n×n 大小的。
输出格式
前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。
输入输出样例
输入 #1复制
6输出 #1复制
2 4 6 1 3 5 3 6 2 5 1 4 4 1 5 2 6 3 4说明/提示
【数据范围】
对于 100% 的数据,6≤n≤13。
递归加回溯,另外,还得判断行列和对角线是否有棋子,行和列都用一维数组标记判断。同一条左斜对角线上行和列相减后的值相同,同一右斜对角线上行和列相加的值相同。
于是上代码:
#include<bits/stdc++.h>
using namespace std;
int n;
int mp[15][15]={0};
int col[50]={0};//判断列
int row[50]={0};//判断行
int sg1[50]={0};//判断对角线
int sg2[50]={0};
int ant=0;
void dfs(int q)
{
if(q==n+1){
ant++;
if(ant<=3){
for(int i=1;i<=n;i++){
cout<<row[i]<<" ";
}
cout<<endl;
}
return ;
}
for(int i=1;i<=n;i++){
if(col[i]==0&&row[q]==0&&sg1[q+i]==0&&sg2[i-q+n]==0){
col[i]=1;
row[q]=i;
sg1[q+i]=1;//同一右斜对角线上行和列相加的值相同
sg2[i-q+n]=1;//同一条左斜对角线上行和列相减后的值相同
dfs(q+1);
col[i]=0;
row[q]=0;
sg1[q+i]=0;
sg2[i-q+n]=0;
}
}
}
int main()
{
cin>>n;
dfs(1);
cout<<ant;
return 0;
}