八皇后 Checker Challenge

哇库~又学到新东西了   题源

题目描述

一个如下的 6×6 的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。

上面的布局可以用序列 2 4 6 1 3 5 来描述,第 i 个数字表示在第 i 行的相应位置有一个棋子,如下:

行号 1 2 3 4 5 6

列号 2 4 6 1 3 5

这只是棋子放置的一个解。请编一个程序找出所有棋子放置的解。
并把它们以上面的序列方法输出,解按字典顺序排列。
请输出前 33 个解。最后一行是解的总个数。

输入格式

一行一个正整数 n,表示棋盘是 n×n 大小的。

输出格式

前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。

输入输出样例

输入 #1复制

6

输出 #1复制

2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4

说明/提示

【数据范围】
对于 100% 的数据,6≤n≤13。

递归加回溯,另外,还得判断行列和对角线是否有棋子,行和列都用一维数组标记判断。同一条左斜对角线上行和列相减后的值相同,同一右斜对角线上行和列相加的值相同。

于是上代码:

#include<bits/stdc++.h>
using namespace std;
int n;
int mp[15][15]={0};
int col[50]={0};//判断列 
int row[50]={0};//判断行 
int sg1[50]={0};//判断对角线 
int sg2[50]={0};
int ant=0;
void dfs(int q)
{
	if(q==n+1){
		ant++;
		if(ant<=3){
			for(int i=1;i<=n;i++){
				cout<<row[i]<<" ";
			}
			cout<<endl;
		}
		return ;
	}
	for(int i=1;i<=n;i++){
		if(col[i]==0&&row[q]==0&&sg1[q+i]==0&&sg2[i-q+n]==0){
			col[i]=1;
			row[q]=i;
			sg1[q+i]=1;//同一右斜对角线上行和列相加的值相同
			sg2[i-q+n]=1;//同一条左斜对角线上行和列相减后的值相同 
			dfs(q+1);
			col[i]=0;
			row[q]=0;
			sg1[q+i]=0;
			sg2[i-q+n]=0;
		}
	}
}
int main()
{
	cin>>n;
	dfs(1);
	cout<<ant;
	return 0;
 } 
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值