CINTA作业8

CINTA作业8
6.设p是奇素数,请证明 Z p ∗ Z_{p}^{*} Zp的所有生成元都是模p的二次非剩余。
证明:
设g为 Z P ∗ Z_{P}^{*} ZP的生成元
g p − 1 ≡ 1 ( m o d p ) g^{p-1}\equiv 1(mod\quad p) gp11(modp)
若g是模p的二次剩余
( g p ) ≡ g ( p − 1 ) / 2 ( m o d p ) ≡ 1 (\frac gp)\equiv g^{(p-1)/2}(mod\quad p)\equiv 1 (pg)g(p1)/2(modp)1
与生成元的阶不同,相矛盾
∴ Z P ∗ 的所有生成元都是模 p 的二次非剩余 \therefore Z_{P}^{*}的所有生成元都是模p的二次非剩余 ZP的所有生成元都是模p的二次非剩余

7.使用抽象代数的语言重新证明欧拉准则
证明:
定义 Z p ∗ Z_{p}^{*} Zp Z p ∗ Z_{p}^{*} Zp的映射 ϕ : ϕ ( a ) = a ( p − 1 ) / 2 \phi:\phi(a)=a^{(p-1)/2} ϕϕ(a)=a(p1)/2
ϕ ( a b ) = ( a b ) ( p − 1 ) / 2 = a ( p − 1 ) / 2 b ( p − 1 ) / 2 = ϕ ( a ) ϕ ( b ) \phi(ab)=(ab)^{(p-1)/2}=a^{(p-1)/2}b^{(p-1)/2}=\phi(a)\phi(b) ϕ(ab)=(ab)(p1)/2=a(p1)/2b(p1)/2=ϕ(a)ϕ(b)
满足群操作
∴ ϕ 满足群同态 \therefore \phi满足群同态 ϕ满足群同态
a 0 = 1 a^{0}=1 a0=1 Z p ∗ Z_{p}^{*} Zp的单位元
∴ K e r ϕ = ϕ − 1 ( 1 ) \therefore Ker\phi=\phi^{-1}({1}) Kerϕ=ϕ1(1)

H = { 1 , − 1 } H=\{1,-1\} H={1,1}
定义 Z p ∗ Z_{p}^{*} Zp H H H的映射为 ψ : ψ ( a ) = ( a p ) \psi:\psi(a)=(\frac ap) ψ:ψ(a)=(pa)
ψ ( a b ) = ( a b p ) = ( a p ) ( b p ) = ψ ( a ) ψ ( b ) \psi(ab)=(\frac {ab}{p})=(\frac ap)(\frac bp)=\psi(a)\psi(b) ψ(ab)=(pab)=(pa)(pb)=ψ(a)ψ(b)
满足群操作
有二次剩余定义和勒让德符号可得:
Z p ∗ Z_{p}^{*} Zp H H H为满射
∴ ψ 为满同态 \therefore \psi为满同态 ψ为满同态
H H H的单位也为1
K e r ψ = ψ − 1 ( 1 ) Ker\psi=\psi^{-1}({1}) Kerψ=ψ1(1)

∀ a ∈ K e r ψ   则 ψ ( a ) = 1 \forall a\in Ker\psi\,则\psi(a)=1 aKerψψ(a)=1
∃ x ∈ Z p ∗ , x 2 ≡ a ( m o d p ) \exists x\in Z_{p}^{*},x^{2}\equiv a(mod\quad p) xZp,x2a(modp)
由费尔马小定理得:
x p − 1 ≡ 1 ( m o d p ) x^{p-1}\equiv1(mod\quad p) xp11(modp)
x p − 1 ≡ a ( p − 1 ) / 2 ≡ 1 ( m o d p ) x^{p-1}\equiv a^{(p-1)/2}\equiv 1(mod\quad p) xp1a(p1)/21(modp)
∴ a ∈ K e r ϕ \therefore a\in Ker\phi aKerϕ
∴ K e r ψ ⊂ K e r ϕ \therefore Ker\psi\subset Ker\phi KerψKerϕ

∀ a ∈ K e r ϕ , ϕ ( a ) = a ( p − 1 ) / 2 = 1 \forall a\in Ker\phi,\phi(a)=a^{(p-1)/2}=1 aKerϕ,ϕ(a)=a(p1)/2=1
a ( p − 1 ) / 2 ) ≡ 1 ( m o d p ) a^{(p-1)/2)}\equiv 1(mod\quad p) a(p1)/2)1(modp)
∴ a ( p − 1 ) / 2 a ≡ a ( m o d p ) \therefore a^{(p-1)/2}a\equiv a(mod\quad p) a(p1)/2aa(modp)
a ( p + 1 ) / 2 ≡ a ( m o d p ) a^{(p+1)/2}\equiv a(mod\quad p) a(p+1)/2a(modp)
a ≡ ( a ( p + 1 ) / 4 ) 2 ( m o d p ) a\equiv(a^{(p+1)/4})^{2}(mod\quad p) a(a(p+1)/4)2(modp)
∴ a 为模 p 的二次剩余, ψ ( a ) = 1 , a ∈ K e r ψ \therefore a为模p的二次剩余,\psi(a)=1,a\in Ker\psi a为模p的二次剩余,ψ(a)=1,aKerψ
∴ K e r ϕ ⊂ K e r ψ \therefore Ker\phi\subset Ker\psi KerϕKerψ

∴ K e r ϕ = K e r ψ \therefore Ker\phi=Ker\psi Kerϕ=Kerψ

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值