CINTA6

4.根据命题9.5,要证明 H \mathbb{H} H G \mathbb{G} G的子群,需要证明对任意 g ∈ G g\in \mathbb{G} gG,有 g H g − 1 = H g\mathbb{H}g^{-1}=\mathbb{H} gHg1=H,实际上,条件可以放松到职只证明 g H g − 1 ⊂ H g\mathbb{H}g^{-1}\subset\mathbb{H} gHg1H.请给出证明。

证明:
假设 g H g − 1 ⊂ H gHg^{-1}\subset H gHg1H
两边右边同乘 g g g
g H ⊂ H g gH\subset Hg gHHg
同理: H ⊂ g H g − 1 H\subset gHg^{-1} HgHg1
可得 H g ⊂ g H Hg\subset gH HggH
综上可得,gH=Hg
∴ H 是 G 的 子 群 \therefore H是G的子群 HG

5.定义映射 ϕ : G ↦ G \phi:\mathbb{G}\mapsto\mathbb{G} ϕ:GG.请证明 ϕ \phi ϕ是一种群同态当且仅当G是阿贝尔群。

证明:
⇒ \Rightarrow
∀ a , b ∈ G \forall a,b\in G a,bG
ϕ ( a b ) = ϕ ( a ) ϕ ( b ) \phi(ab)=\phi(a)\phi(b) ϕ(ab)=ϕ(a)ϕ(b)
ϕ ( a b ) = ( a b ) 2 = ( a b ) ( a b ) = a 2 b 2 \phi(ab)=(ab)^{2}=(ab)(ab)=a^{2}b^{2} ϕ(ab)=(ab)2=(ab)(ab)=a2b2
∴ G 是 阿 贝 尔 群 \therefore G是阿贝尔群 G
⇐ \Leftarrow
ab=ba
ϕ ( a b ) = ( a b ) 2 = ( a b ) ( a b ) = a a b b = a 2 b 2 = ϕ ( a ) ϕ ( b ) \phi(ab)=(ab)^{2}=(ab)(ab)=aabb=a^{2}b^{2}=\phi(a)\phi(b) ϕ(ab)=(ab)2=(ab)(ab)=aabb=a2b2=ϕ(a)ϕ(b)
∴ ϕ 是 一 种 群 同 态 \therefore \phi是一种群同态 ϕ

6.设 ϕ : G ↦ H \phi:\mathbb{G}\mapsto\mathbb{H} ϕ:GH是一种群同态,请证明:如果群 G \mathbb{G} G是循环群,则 ϕ ( G ) \phi(G) ϕ(G)也是循环群。如果群 G \mathbb{G} G是交换群,则 ϕ ( G ) \phi(G) ϕ(G)也是交换群。

证明:
设g是G的生成元, ϕ : G ↦ H : g → g n \phi:\mathbb{G}\mapsto\mathbb{H}:g\to g^{n} ϕ:GH:ggn
ϕ ( g n ) = ϕ ( g ) ϕ ( g ) . . . ϕ ( g ) \phi(g^{n})=\phi(g)\phi(g)...\phi(g) ϕ(gn)=ϕ(g)ϕ(g)...ϕ(g) (n个 ϕ ( g ) \phi(g) ϕ(g))= ϕ ( g ) n \phi(g)^{n} ϕ(g)n
∴ ϕ ( G ) 是 循 环 群 \therefore \phi(G)是循环群 ϕ(G)

ϕ : G ↦ H : g → g 2 \phi:\mathbb{G}\mapsto\mathbb{H}:g\to g^{2} ϕ:GH:gg2
∀ a , b ∈ G \forall a,b\in G a,bG
ab=ba
ϕ ( a b ) = ( a b ) 2 = ( a b ) ( a b ) = a 2 b 2 = ϕ ( a ) ϕ ( b ) \phi(ab)=(ab)^{2}=(ab)(ab)=a^{2}b^{2}=\phi(a)\phi(b) ϕ(ab)=(ab)2=(ab)(ab)=a2b2=ϕ(a)ϕ(b)
ϕ ( b a ) = ( b a ) 2 = ( b a ) ( b a ) = b 2 a 2 = ϕ ( b ) ϕ ( a ) \phi(ba)=(ba)^{2}=(ba)(ba)=b^{2}a^{2}=\phi(b)\phi(a) ϕ(ba)=(ba)2=(ba)(ba)=b2a2=ϕ(b)ϕ(a)
∴ ϕ ( a b ) = ϕ ( a ) ϕ ( b ) = ϕ ( b ) ϕ ( a ) = ϕ ( b a ) \therefore \phi(ab)=\phi(a)\phi(b)=\phi(b)\phi(a)=\phi(ba) ϕ(ab)=ϕ(a)ϕ(b)=ϕ(b)ϕ(a)=ϕ(ba)

7.证明:如果 H \mathbb{H} H是群 G \mathbb{G} G上指标为2的子群,则 H \mathbb{H} H G \mathbb{G} G的正规子群。

证明:
由题意得: [ G : H ] = 2 [G:H]=2 [G:H]=2,群G上有两个不同的陪集
∀ g ∈ H \forall g\in H gH,gH=Hg=H
∀ g ∉ H \forall g\notin H g/H,则gH=Hg=G-H
综上所述, H \mathbb{H} H G \mathbb{G} G的正规子群

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值