CINTA作业4

CINTA作业4

第六章

7.设 G \mathbb{G} G是群,对任意 n ∈ N n\in N nN, i ∈ [ 0 , n ] i \in [0, n] i[0,n] g i ∈ G g_i \in \mathbb{G} giG。证明 g 0 g 1 ⋯ g n g_0 g_1 \cdots g_n g0g1gn的逆元是 g n − 1 ⋯ g 1 − 1 g 0 − 1 g_n^{-1} \cdots g_1^{-1} g_0^{-1} gn1g11g01
证明:
∵ g n − 1 g n = e ( g 0 . . . g 1 g n ) − 1 = ( g n − 1 . . . g 1 − 1 g 0 − 1 ) \because g_n^{-1}g_{n}=e\quad(g_{0}...g_{1}g_{n})^{-1}=(g_{n}^{-1}...g_{1}^{-1}g_{0}^{-1}) gn1gn=e(g0...g1gn)1=(gn1...g11g01)
( g n − 1 . . . g 1 − 1 g 0 − 1 ) ( g 0 . . . g 1 g n ) = ( g n − 1 . . . g 1 − 1 ( g 0 − 1 g 0 ) . . . g 1 g n ) = e (g_{n}^{-1}...g_{1}^{-1}g_{0}^{-1})(g_{0}...g_{1}g_{n})=(g_{n}^{-1}...g_{1}^{-1}(g_{0}^{-1}g_{0})...g_{1}g_{n})=e (gn1...g11g01)(g0...g1gn)=(gn1...g11(g01g0)...g1gn)=e
∴ g n − 1 . . . g 1 − 1 g 0 − 1 \therefore g_{n}^{-1}...g_{1}^{-1}g_{0}^{-1} gn1...g11g01

8.证明:任意群 G \mathbb{G} G的两个子群的交集也是群 G \mathbb{G} G的子群。
证明:构造 s 1 s 2 s_{1}\quad s_{2} s1s2 G \mathbb{G} G的子群,他们的交集 s 3 = s 1 ∩ s 2 s_{3}=s_{1}\cap s_{2} s3=s1s2
由题意得: s 3 s_{3} s3满足结合律
∀ a , b ∈ s 3 \forall a,b\in s_{3} a,bs3
a ∈ s 1 , s 2 , b ∈ s 1 , s 2 a\in s_{1},s_{2},b\in s_{1},s_{2} as1,s2,bs1,s2
a b ∈ s 1 , s 2 , 则 a b ∈ s 3 ab\in s_{1},s_{2},则ab\in s_{3} abs1,s2,abs3
e ∈ s 1 , s 2 , 则 e ∈ s 3 e\in s_{1},s_{2},则e\in s_{3} es1,s2,es3
a − 1 ∈ s 1 , s 2 , 则 a − 1 ∈ s 3 a^{-1}\in s_{1},s_{2},则a^{-1}\in s_{3} a1s1,s2,a1s3
综上所述, s 3 s_{3} s3 G \mathbb{G} G的子群

10.设G是阿贝尔群, H \mathbb{H} H K \mathbb{K} K G \mathbb{G} G的子群。
请证明 H K = { h k : h ∈ H , k ∈ K } \mathbb{H} \mathbb{K} = \{hk: h \in \mathbb{H}, k \in \mathbb{K}\} HK={hk:hH,kK}是群 G \mathbb{G} G的子群。
如果 G \mathbb{G} G不是阿贝尔群,结论是否依然成立?
证明:
∀ h 1 k 1 ∈ H k , h 2 k 2 ∈ H k \forall h_{1}k_{1}\in\mathbb{Hk},h_{2}k_{2}\in\mathbb{Hk} h1k1Hk,h2k2Hk
由题意得: h 1 , h 2 ∈ H , k 1 , k 2 ∈ k h_{1},h_{2}\in\mathbb{H},k_{1},k_{2}\in\mathbb{k} h1,h2H,k1,k2k
h 1 k 1 h 2 k 2 = h 1 h 2 k 1 k 2 h_{1}k_{1}h_{2}k_{2}=h_{1}h_{2}k_{1}k_{2} h1k1h2k2=h1h2k1k2
h 1 h 2 ∈ H , k 1 k 2 ∈ K , 则 h 1 k 1 h 2 k 2 ∈ H K h_{1}h_{2}\in\mathbb{H},k_{1}k_{2}\in\mathbb{K},则h_{1}k_{1}h_{2}k_{2}\in\mathbb{HK} h1h2H,k1k2K,h1k1h2k2HK
( h 1 k 1 ) − 1 = k 1 − 1 h 1 − 1 = h 1 − 1 k 1 − 1 (h_{1}k_{1})^{-1}=k_{1}^{-1}h_{1}^{-1}=h_{1}^{-1}k_{1}^{-1} (h1k1)1=k11h11=h11k11
h 1 − 1 ∈ H , k 1 − 1 ∈ K , 则 h 1 − 1 k 1 − 1 ∈ H K h_{1}^{-1}\in\mathbb{H},k_{1}^{-1}\in\mathbb{K},则h_{1}^{-1}k_{1}^{-1}\in\mathbb{HK} h11H,k11K,h11k11HK
综上所述, H K \mathbb{HK} HK G \mathbb{G} G的子群
G 不是阿贝尔群 \mathbb{G}不是阿贝尔群 G不是阿贝尔群,结论不成立,因为此时群 G \mathbb{G} G不满足交换律, k 1 − 1 h 1 − 1 ≠ h 1 − 1 k 1 − 1 k_{1}^{-1}h_{1}^{-1}\neq h_{1}^{-1}k_{1}^{-1} k11h11=h11k11

11.设 G \mathbb{G} G是阿贝尔群, m m m是任意整数,记 G m = { g m : g ∈ G } \mathbb{G}^m = \{ g^m: g\in \mathbb{G}\} Gm={gm:gG}。请证明 G m \mathbb{G}^m Gm G \mathbb{G} G的一个子群。
证明:
∀ g 1 , g 2 ∈ G ∀ g 1 m , g 2 m ∈ G m \forall g_{1},g_{2}\in\mathbb{G}\quad\forall g_{1}^{m},g_{2}^{m}\in\mathbb{G}_{m} g1,g2Gg1m,g2mGm
g 1 m g 2 m = ( g 1 g 2 ) m , 其中 g 1 g 2 ∈ G g_{1}^m g_{2}^{m}=(g_{1}g_{2})^{m},其中g_{1}g_{2}\in\mathbb{G} g1mg2m=(g1g2)m,其中g1g2G
g ∈ G g m ∈ G m , ( g m ) − 1 = ( g 1 − 1 ) m g\in\mathbb{G}\quad g^{m}\in\mathbb{G}_{m},(g^{m})^{-1}=(g_{1}^{-1})^{m} gGgmGm,(gm)1=(g11)m
综上所述, G m \mathbb{G}^m Gm G \mathbb{G} G的一个子群

第7章

6.证明:如果群 G \mathbb{G} G没有非平凡子群,则群 G \mathbb{G} G是循环群。
证明:
由题意得:
G 没有平凡子群,则它的子群为 { e } 和它自己本身 \mathbb{G}没有平凡子群,则它的子群为\{e\}和它自己本身 G没有平凡子群,则它的子群为{e}和它自己本身
{ e } 为循环群 \{e\}为循环群 {e}为循环群
∀ g ∈ G 且 g ≠ e \forall g\in\mathbb{G}且g\ne e gGg=e
< g > = H <g>=\mathbb{H} <g>=H,由于 G \mathbb{G} G没有平凡子群且 g ≠ e g\ne e g=e,则 < g > = G <g>=\mathbb{G} <g>=G, G \mathbb{G} G是循环群

7.证明推论7.3,即循环群 G \mathbb{G} G中任意元素的阶都整除群 G \mathbb{G} G的阶。
证明:
由命题7.5可得:
G = < g > 是阶为 n 的循环群 \mathbb{G}=<g>是阶为n的循环群 G=<g>是阶为n的循环群,若 h = g k , h 的阶为 n / d , d = g c d ( k , n ) h=g^{k},h的阶为n/d,d=gcd(k,n) h=gk,h的阶为n/d,d=gcd(k,n)
n / d × d = n , d 为整数,所以 n / d ∣ n n/d\times d=n,d为整数,所以n/d\mid n n/d×d=n,d为整数,所以n/dn

8.编程完成以下工作:给定一个素数 p p p,找出 Z p ∗ Z_p^{*} Zp的最小生成元。对于素数 1 < p < 10000 1< p < 10000 1<p<10000,哪一个素数 p p p使得 Z p ∗ Z_p^{*} Zp的最小生成元最大?

#include <iostream>
#include <cmath>
#include<algorithm>
#include <vector>
using namespace std;
bool prime(int x)//判断素数
{
	for (int i = 2; i <= sqrt(x); i++)
	{
		if (x % i == 0)
		{
			return false; break;
		}
		else 
			continue;
	}
	return true;
}
void primeList(int max,vector<int>& primelist )//找到范围内的素数
{
	if (max < 2)
		exit(1);
	else 
	{
		for (int i = 2; i < max; i++)
		{
			if (prime(i) == 1)
				primelist.push_back(i);
		}
	}
}
int getmin_generator(int p)
{
	int j = 0;
	if (p ==2)return 1;
	for (int i = 2; i <= p - 1; i++)//寻找生成元
	{
		for (j = 1; j < p - 1; j++)
		{
			if ((int)pow(i, j) % p == 1)break;
		}
		if (j == p - 1)return i;
	}
}
int main()
{
	int max=0,min=0;
	cin >> max;
	vector<int> primelist;
	vector<int> maxgenerator;
	primeList(max, primelist);
	vector<int>::iterator i;
	for (i = primelist.begin(); i != primelist.end(); i++)
	{
		min = getmin_generator(*i);
		cout << *i << " " << min;
		cout << endl;
		maxgenerator.push_back(min);
	}
	int maxgener = *max_element(maxgenerator.begin(), maxgenerator.end());
	int maxPosition = max_element(maxgenerator.begin(), maxgenerator.end()) - maxgenerator.begin();
	cout << maxgener<<endl;
	cout << maxPosition;
	

}

最大的最小生成元为5,对应的素数为:23,41,73

第8章

3.如果 G \mathbb{G} G是群, H \mathbb{H} H是群 G \mathbb{G} G的子群,且 [ G : H ] = 2 \lbrack \mathbb{G} : \mathbb{H}\rbrack =2 [G:H]=2,请证明对任意的 g ∈ G g\in \mathbb{G} gG g H = H g g \mathbb{H} = \mathbb{H}g gH=Hg
证明:
由题意得:
H \mathbb{H} H G \mathbb{G} G上不相同的左陪集的个数为2,其中一个为 H \mathbb{H} H本身,另一个设为 H 1 \mathbb{H_{1}} H1
∀ g ∈ G 且 g ∈ H \forall g\in\mathbb{G}且g\in\mathbb{H} gGgH
g H = H g = H g\mathbb{H}=\mathbb{H}g=\mathbb{H} gH=Hg=H
g ∉ H g\notin\mathbb{H} g/H,因为 [ G : H ] = 2 [\mathbb{G}:\mathbb{H}]=2 [G:H]=2,所以 g ∈ H 1 g\in\mathbb{H_{1}} gH1
g H 1 = H 1 g = H 1 g\mathbb{H_{1}}=\mathbb{H_{1}}g=\mathbb{H_{1}} gH1=H1g=H1
综上所述,任意的 g ∈ G g\in \mathbb{G} gG g H = H g g \mathbb{H} = \mathbb{H}g gH=Hg

4.设 G \mathbb{G} G是阶为 p q pq pq的群,其中 p p p q q q是素数。请证明 G \mathbb{G} G的任意真子群是循环群。
证明:
由题意得:
当任取的真子群为 { e } \{e\} {e}时, { e } \{e\} {e}为循环群
当真子群不为 { e } \{e\} {e}时,任取一真子群 H \mathbb{H} H,由推论8.1得
∣ H ∣ ∣ ∣ G ∣ |\mathbb{H}|\mid|\mathbb{G}| HG, ∣ G ∣ = p q |\mathbb{G}|=pq G=pq,则 ∣ H ∣ = p 或 q |\mathbb{H}|=p或q H=pq,p和q为素数,由推论8.2得: ∣ H ∣ |\mathbb{H}| H为循环群
综上所述, G \mathbb{G} G的任意真子群是循环群

5.如果群 H \mathbb{H} H是有限群 G \mathbb{G} G的真子群,即存在 g ∈ G g\in \mathbb{G} gG但是 g ∉ H g \not \in \mathbb{H} gH。请证明 ∣ H ∣   ≤ ∣ G ∣   / 2 \vert \mathbb{H} \vert  \leq \vert \mathbb{G} \vert \ /2 H∣ G /2
证明:
由题意得: g ∈ G 但是 g ∉ H g\in\mathbb{G}但是g\notin\mathbb{H} gG但是g/H,则 H \mathbb{H} H G \mathbb{G} G上的左陪集数至少为2
[ G : H ] ≥ 2 [\mathbb{G}:\mathbb{H}]\ge2 [G:H]2
∣ G ∣ / ∣ H ∣ ≥ 2 , ∣ H ∣ ≤ ∣ G ∣ / 2 |\mathbb{G}|/|\mathbb{H}|\ge2,|\mathbb{H}|\le|\mathbb{G}|/2 G∣/∣H2,HG∣/2

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值