CINTA7

1.运用CRT求解 x ≡ 8 ( m o d 11 ) \equiv 8(mod\quad 11) 8(mod11),x ≡ 3 ( m o d 19 ) \equiv 3(mod\quad 19) 3(mod19)

a = 8 , b = 3 , p = 11 , q = 19 , n = 11 × 19 = 209 a=8,b=3,p=11,q=19,n=11\times19=209 a=8,b=3,p=11,q=19,n=11×19=209
p p − 1 ≡ 1 ( m o d 11 ) , q q − 1 ≡ 1 ( m o d 19 ) pp^{-1}\equiv1(mod\quad11),qq^{-1}\equiv1(mod\quad19) pp11(mod11),qq11(mod19)
[ 1 0 19 0 1 11 ] → [ 0 1 11 1 − 1 8 ] → [ 1 − 1 8 − 1 2 3 ] → \begin{bmatrix}1 & 0 & 19\\ 0 & 1 & 11\\ \end{bmatrix}\to\begin{bmatrix}0 & 1 & 11\\ 1 & -1 & 8\\ \end{bmatrix}\to\begin{bmatrix}1 & -1 & 8\\ -1 & 2 & 3\\ \end{bmatrix}\to [10011911][0111118][111283]
[ 1 − 1 8 − 2 4 6 ] → [ − 1 2 3 3 − 5 2 ] → [ 3 − 5 2 − 4 7 1 ] \begin{bmatrix}1 & -1 & 8\\ -2 & 4 & 6\\ \end{bmatrix}\to\begin{bmatrix}-1 & 2 & 3\\ 3 & -5 & 2\\ \end{bmatrix}\to\begin{bmatrix}3 & -5 & 2\\ -4 & 7 & 1\\ \end{bmatrix} [121486][132532][345721]
p − 1 = 7 , q − 1 = 7 p^{-1}=7,q^{-1}=7 p1=7,q1=7
x ≡ 8 × 7 × 19 + 3 × 11 × 7 ( m o d 209 ) ≡ 1064 + 231 ( m o d 209 ) x\equiv8\times7\times19+3\times11\times7(mod\quad209)\equiv1064+231(mod\quad209) x8×7×19+3×11×7(mod209)1064+231(mod209)
x = 41 x=41 x=41

2.运用CRT求解x ≡ 1 ( m o d 5 ) \equiv 1(mod\quad 5) 1(mod5),x ≡ 2 ( m o d 7 ) \equiv 2(mod\quad 7) 2(mod7)x ≡ 3 ( m o d 9 ) \equiv 3(mod\quad 9) 3(mod9),x ≡ 4 ( m o d 11 ) \equiv 4(mod\quad 11) 4(mod11)

M = 5 × 7 × 9 × 11 M=5\times7\times9\times11 M=5×7×9×11
M 1 = 3465 / 5 = 693 693 ∗ b 1 − 1 ≡ 1 ( m o d 5 ) 3 ∗ b 1 − 1 ≡ 1 ( m o d 5 ) b 1 − 1 = 2 M_{1}=3465/5=693\quad693*b_{1}^{-1}\equiv1(mod\quad5)\quad3*b_{1}^{-1}\equiv1(mod\quad5)\quad b_{1}^{-1}=2 M1=3465/5=693693b111(mod5)3b111(mod5)b11=2
M 2 = 3465 / 7 = 495 495 ∗ b 2 − 1 ≡ 1 ( m o d 7 ) 5 ∗ b 2 − 1 ≡ 1 ( m o d 7 ) b 2 − 1 = 3 M_{2}=3465/7=495\quad495*b_{2}^{-1}\equiv1(mod\quad7)\quad5*b_{2}^{-1}\equiv1(mod\quad7)\quad b_{2}^{-1}=3 M2=3465/7=495495b211(mod7)5b211(mod7)b21=3
M 3 = 3465 / 9 = 385 385 ∗ b 3 − 1 ≡ 1 ( m o d 9 ) 7 ∗ b 3 − 1 ≡ 1 ( m o d 9 ) b 3 − 1 = 4 M_{3}=3465/9=385\quad385*b_{3}^{-1}\equiv1(mod\quad9)\quad7*b_{3}^{-1}\equiv1(mod\quad9)\quad b_{3}^{-1}=4 M3=3465/9=385385b311(mod9)7b311(mod9)b31=4
M 4 = 3465 / 11 = 315 315 ∗ b 4 − 1 ≡ 1 ( m o d 11 ) 7 ∗ b 4 − 1 ≡ 1 ( m o d 11 ) b 4 − 1 = 8 M_{4}=3465/11=315\quad315*b_{4}^{-1}\equiv1(mod\quad11)\quad7*b_{4}^{-1}\equiv1(mod\quad11)\quad b_{4}^{-1}=8 M4=3465/11=315315b411(mod11)7b411(mod11)b41=8
x ≡ 1 × 693 × 2 + 2 × 495 × 3 + 3 × 385 × 4 + 4 × 315 × 8 ( m o d 3465 ) ≡ 1386 + 2970 + 4620 + 10080 ( m o d 3465 ) ≡ 19056 ( m o d 3465 ) x\equiv1\times693\times2+2\times495\times3+3\times385\times4+4\times315\times8(mod\quad3465)\equiv1386+2970+4620+10080(mod\quad3465)\equiv19056(mod\quad3465) x1×693×2+2×495×3+3×385×4+4×315×8(mod3465)1386+2970+4620+10080(mod3465)19056(mod3465)
x = 1731 x=1731 x=1731

3.手动计算 200 0 2019 ( m o d 221 ) 2000^{2019}(mod\quad 221) 20002019(mod221),不允许使用电脑或者其他电子设备

221 = 13 × 17 221=13\times17 221=13×17,构造 Z 13 ∗ × Z 17 ∗ Z_{13}^{*}\times Z_{17}^{*} Z13×Z17
2000 ↔ ( 11 , 11 ) 2000\leftrightarrow(11,11) 2000(11,11)
( 11 , 11 ) 2019 = ( 1 1 2019 m o d 13 , 1 1 2019 m o d 17 ) (11,11)^{2019}=(11^{2019}mod\quad13,11^{2019}mod\quad17) (11,11)2019=(112019mod13,112019mod17)
由费尔马小定理得:
( 11 , 11 ) 2019 = ( 1 1 2019 m o d 13 , 1 1 2019 m o d 17 ) = ( 1 1 168 ∗ 12 + 3 m o d 13 , 1 1 126 ∗ 16 + 3 m o d 17 ) = ( 1 1 3 m o d 13 , 1 1 3 m o d 17 ) = ( 5 , 5 ) (11,11)^{2019}=(11^{2019}mod\quad13,11^{2019}mod\quad17)=(11^{168*12+3}mod\quad13,11^{126*16+3}mod\quad17)=(11^{3}mod\quad13,11^{3}mod\quad17)=(5,5) (11,11)2019=(112019mod13,112019mod17)=(1116812+3mod13,1112616+3mod17)=(113mod13,113mod17)=(5,5)
由中国剩余定理得:
x ≡ 5 ( m o d 13 ) , x ≡ 5 ( m o d 17 ) x\equiv 5(mod\quad 13),x\equiv 5(mod\quad 17) x5(mod13),x5(mod17)
n = 13 × 17 a = 5 , b = 5 , p = 13 , q = 17 n=13\times 17\quad a=5,b=5,p=13,q=17 n=13×17a=5,b=5,p=13,q=17
p p − 1 ≡ 1 ( m o d 13 ) , q q − 1 ≡ 1 ( m o d 17 ) pp^{-1}\equiv1(mod\quad13),qq^{-1}\equiv1(mod\quad17) pp11(mod13),qq11(mod17)
[ 1 0 13 0 1 17 ] → [ 0 1 17 1 − 1 − 4 ] → [ 1 − 1 − 4 4 − 3 1 ] \begin{bmatrix}1 & 0 & 13\\ 0 & 1 & 17\\ \end{bmatrix}\to\begin{bmatrix}0 & 1 & 17\\ 1 & -1 & -4\\ \end{bmatrix}\to\begin{bmatrix}1 & -1 & -4\\ 4 & -3 & 1\\ \end{bmatrix} [10011317][0111174][141341]
p − 1 = 4 , q − 1 = 10 p^{-1}=4,q^{-1}=10 p1=4,q1=10
x ≡ 5 × 10 × 17 + 5 × 4 × 13 ( m o d 13 × 17 ) ≡ 850 + 260 ( m o d 221 ) x\equiv5\times10\times17+5\times4\times13(mod\quad13\times17)\equiv850+260(mod\quad221) x5×10×17+5×4×13(mod13×17)850+260(mod221)
x = 5 x=5 x=5
`

9.请使用第一同构定理证明定理10.4中定义的映射 ϕ \phi ϕ的单射性

证明:
Z n ≅ Z n × Z p Z_{n}\cong Z_{n}\times Z_{p} ZnZn×Zp
Z n ↦ Z n × Z p Z_{n}\mapsto Z_{n}\times Z_{p} ZnZn×Zp的映射为 ϕ ( x ) = ( [ x m o d p ] , [ x m o d q ] ) \phi(x)=([x\quad mod \quad p],[x\quad mod \quad q]) ϕ(x)=([xmodp],[xmodq]), Z n × Z p Z_{n}\times Z_{p} Zn×Zp的单位元为0, K = K e r ϕ { ( 0 , 0 ) } K=Ker\phi\{(0,0)\} K=Kerϕ{(0,0)},K是正规子群
ψ : Z n ↦ Z n / K \psi:Z_{n}\mapsto Z_{n}/K ψ:ZnZn/K是标准同态,由第一同构定理可得:存在唯一的同构映射 η : Z n ↦ ϕ ( Z n ) \eta:Z_{n}\mapsto\phi(Z_{n}) η:Znϕ(Zn),使得 ϕ = η ψ \phi=\eta\psi ϕ=ηψ
∣ K ∣ = 1 , ∣ Z n ∣ = ∣ Z n / K ∣ |K|=1,|Z_{n}|=|Z_{n}/K| K=1,Zn=Zn/K,则 ψ \psi ψ为单射,因为 ϕ = η ψ \phi=\eta\psi ϕ=ηψ,所以 ϕ \phi ϕ为单射

10.完成定理10.4的证明,即证明 Z n ∗ 与 Z n ∗ × Z p ∗ Z^{*}_{n}与Z^{*}_{n}\times Z^{*}_{p} ZnZn×Zp同构

证明:
证明 Z n ∗ × Z p ∗ Z^{*}_{n}\times Z^{*}_{p} Zn×Zp为群
显然满足封闭性,乘法满足结合律
Z n ∗ = { 1 , 2 , . . . , n − 1 } , Z p ∗ = { 1 , 2 , . . . , p − 1 } , Z^{*}_{n}=\{1,2,...,n-1\},Z^{*}_{p}=\{1,2,...,p-1\}, Zn={1,2,...,n1},Zp={1,2,...,p1},
单位元为1,逆元(不确定) a p − 1 a n − 1 a^{p-1}a^{n-1} ap1an1
证明同构
定义从 Z n ∗ Z^{*}_{n} Zn Z n ∗ × Z p ∗ Z^{*}_{n}\times Z^{*}_{p} Zn×Zp的映射 ϕ ( x ) = ( [ x m o d p ] , [ x m o d q ] ) \phi(x)=([x\quad mod\quad p],[x\quad mod\quad q]) ϕ(x)=([xmodp],[xmodq])
证明映射 ϕ \phi ϕ是一种双射,由中国剩余定理可得,任意序对中的两个同余式在模n下有唯一解, ϕ \phi ϕ为满射。
由中国剩余定理可得 ∀ a , b < n \forall a,b<n a,b<n,有 ( [ a m o d p ] , [ a m o d q ] ) = ( [ b m o d p ] , [ b m o d q ] ) ([a\quad mod\quad p],[a\quad mod\quad q])=([b\quad mod\quad p],[b\quad mod\quad q]) ([amodp],[amodq])=([bmodp],[bmodq]),则a=b

证明映射 ϕ \phi ϕ保持群操作
ϕ ( a × b ) = ( [ ( a × b ) m o d p ] , [ ( a × b ) m o d q ] ) \phi(a\times b)=([(a\times b)mod\quad p],[(a\times b)mod\quad q]) ϕ(a×b)=([(a×b)modp],[(a×b)modq]) = ( [ a m o d p × b m o d p ] m o d p , [ a m o d q × b m o d q ] m o d q =([a\quad mod\quad p\times b\quad mod\quad p]mod\quad p,[a\quad mod\quad q\times b\quad mod\quad q]mod\quad q =([amodp×bmodp]modp,[amodq×bmodq]modq = ( [ a m o d p ] , [ a m o d q ] × ( [ b m o d p ] , [ b m o d q ] =([a\quad mod\quad p],[a\quad mod\quad q]\times([b\quad mod\quad p],[b\quad mod\quad q] =([amodp],[amodq]×([bmodp],[bmodq] = ϕ ( a ) × ϕ ( b ) =\phi(a)\times\phi(b) =ϕ(a)×ϕ(b)
综上所述, Z n ∗ 与 Z n ∗ × Z p ∗ Z^{*}_{n}与Z^{*}_{n}\times Z^{*}_{p} ZnZn×Zp同构

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值