图论总结

最近又把图论的所有算法重新复习一遍,因为这里的算法模版都比较复杂,所以现在重新整理一遍。
在图论中一共有一下这几种问题:
一、最短路径问题
1.没有负权边

在没有负权边的情况下,我们就使用Dijkstra算法,如果是稠密图,我们就使用矩阵来存储边,如果是稀疏图,我们就是用邻接表来存储图。

最经典的Dijkstra算法:

int Dijkstra(){
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    for(int i = 0; i < n; i ++){
     int t = -1;
        for(int j = 1; j <= n; j ++){
            if(!st[j] && (t == -1 || dist[t] > dist[j]) t = j;
        }
        for(int j = 1; j <= n; j ++){
            dist[j] = min(dist[j], dist[t] + g[t][j];
        }
        st[t] = true;
    }
    if(dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}
2.有负权边(但没有负权回路)

一种比较简单的就是Bellman_ford算法,该算法非常暴力,直接使用两次循环。这个算法有两个优点:1.他可以做哪些,给你具体了一条路径下只能有几条边的限制。2.该算法实现起来非常简单,对于边的存储,只需要使用结构体就可以。缺点就是:1.时间复杂度太高了。

假设我们现在已经使用dist[a] 来更新 dist[b] 如果我们还要使用 dist[b] 来更新 dist[c] 就相当于本次遍历了两条边。而Bellman-Ford算法每一次只允许遍历一条边。这就违反了算法的定义;所以要memcpy(backup, dist, sizeof dist); 来拷贝上一次的数组。这样就是为了保证每一次,只遍历一个点。

核心代码如下:

int bellman_ford(){
	memset(dist, 0x3f, sizeof dist);
	dist[1] = 0;
	for(int i = 0; i < n; i ++ ){
		memcpy(backup, dist ,sizeof dist);
		for(int i = 0; i < n; i ++){
			int a = edges[i].a, b = edges[i].b, w = edges[i].w;	
			dist[b] = min(dist[b], dist[a] + w);
		}
	}
	if(dist[n] > 0x3f3f3f3f / 2) return -1;
	return dist[n];
}

第二种就是spfa算法,该算法是对Bellman_ford算法的一种优化,该算法使用了一个 queue和一个bool数组,队列用来存储每一次跟新过的点,而bool数组用来判断更新的点是否在队列中如果在队列中,就不用重复地加入到队列,这样可以降低时间复杂度。

核心代码如下:

int spfa(){
	memset(dist, 0x3f, sizeof dist);
	dist[1] = 0;
	st[1] = true;
	queue<int> q;
	q.push(1);
	while(q.size()){
		int t = q.front();
		q.pop();
		st[t] = false;
		for(int i = h[t]; i != -1; i = ne[i]){
			int j = e[i];
			if(dist[j] > dist[t] + w[i]){
				dist[j] = dist[t] + w[i];
			}
			if(!st[j]){
				q.push(j);
				st[j] = true;
			}
		}
	}
	if(dist[n] == 0x3f3f3f3f) return -1;
	return dist[n];
	
}
3.最后还有一个非常特殊的算法就是Floyd算法(多元汇最短路)

该算法的思想就是把每一个点都当做中转点来遍历一遍,具体代码如下

这是自己以前写过的博客,就懒得在抄一遍了。

AcWing 854. Floyd求最短路 - AcWing

void floyd(){
    for(int k = 1; k <= n; k ++){
        for(int i = 1; i <= n; i ++){
            for(int j = 1; j <= n; j ++){
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
            }
        }
    }
}
二、最小生成树问题
1.稠密图

使用Prim算法

int Prim(){
    //先初始化为 `正无穷`
    memset(dist, 0x3f, sizeof dist);
    int res = 0;
    for(int i = 0; i < n; i ++){
        int t = -1;
        //找一个距离最短的点 
        for(int j = 1; j <= n; j ++) {
            if(!st[j] && (t == -1 || dist[t] > dist[j])) t = j;
        }
        //如果是第一次迭代,就不进行此操作 
        if(i && dist[t] == INF) return INF;
        //如果是第一次迭代,就不进行此操作 
        if(i) res += dist[t];
        //把当前选中的点 t 加入到集合 S 中 
        st[t] = true;//始终从集合 S 中选择 
        //更新其他边到集合 S 的距离 
        printf("开始更新 dist 数组  第 %d 次\n" , (i + 1));
        for(int j = 1; j <= n; j ++){
            dist[j] = min(dist[j], g[t][j]);
        }
    }
    return res; 
}
2.稀疏图

使用Kruskal算法

#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010, M = 200010, INF = 0x3f3f3f3f;
int n, m;
int p[N];
struct Edge{
    int a, b, w;
    bool operator<(const Edge &W)const{
        return w < W.w;
    }
}edges[M];
int find(int x){
    if(p[x] != x) p[x] = find(p[x]);
    return p[x];
}
int kruskal(){
    sort(edges, edges + m);
    //初始化并查集
    for(int i = 1; i <= n; i ++) p[i] = i;
    int res = 0, cnt = 0;
    for(int i = 0; i < m; i ++){
        int a = edges[i].a, b = edges[i].b, w = edges[i].w;
        a = find(a), b = find(b);
        if(a != b){
            p[a] = b;
            res += w;
            cnt ++;
        }
    }
    if(cnt < n - 1) return INF;
    return res;
}
int main(){
    scanf("%d%d", &n, &m);
    for(int i = 0; i < m; i ++){
        int a, b, w;
        scanf("%d%d%d", &a, &b, &w);
        edges[i] = {a, b, w};
    }
    int t = kruskal();
    if(t == INF) puts("impossible");
    else printf("%d\n", t);
    return 0;
}
三、二分图

二分图经典算法,染色法,染色法就是一个简单的DFS。话不多说

代码献上

#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010, M = 200010;
int n, m;
int h[N], e[M], ne[M], idx;
int color[N];
void add(int a, int b){
	e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}
bool dfs(int u, int c){
	color[u] = c;
	for(int i = h[u]; i != -1; i = ne[i]){
		int j = e[i];
		if(!color[j]){
			if(!dfs(j, 3 - c)) return false;
		}else if(color[j] == c) return false;
	}
	return true;
	
}
int main(){
	scanf("%d%d", &n, &m);
	memset(h, -1, sizeof h);
	while(m --){
		int a, b;
		scanf("%d%d", &a, &b);
		add(a, b), add(b, a);
	}
	bool flag = true;
	for(int i = 1; i <= n; i ++){
		if(!color[i]){
			if(!dfs(i, 1)){
				flag = false;
				break;
			}
		}
	}
	if(flag) puts("Yes");
	else puts("No");
}

二分图的最大匹配算法:

代码献上:

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 510, M = 100010;
int n1, n2, m;
int h[N], e[M], ne[M], idx;
int match[N];
bool st[N];
void add(int a, int b){
	e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}
bool find(int x){
	for(int i = h[x]; i != -1; i = ne[i]){
		int j = e[i]; // 女生 
		if(!st[j]){ // 当前女生还没有心上人 
			st[j] = true;
			if(match[j] == 0 || find(match[j])){
				match[j] = x;
				return true;
			}
		}
	}
	return false;
}
int main(){
	scanf("%d%d%d", &n1, &n2, &m);
	memset(h, -1, sizeof h);
	while(m -- ){
		int a, b;
		scanf("%d%d", &a, &b);
		add(a, b);
	}
	int res = 0;
	for(int i = 1; i <= n1; i ++){
		memset(st, false, sizeof st);
		if(find(i)) res ++;
	}
	printf("%d\n", res);
	return 0;
}

  • 6
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值