中医药膳健康管理系统

本文介绍了中医药膳学交互小程序的关键技术,包括NLP的语音识别和理解、知识图谱构建、个性化推荐的深度学习应用、健康数据分析以及可视化展示与交互设计。深度学习在个性化推荐中发挥重要作用,结合传统算法提升用户体验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言:

对于针对中医药膳学的自然语言处理交互小程序来说,以下几个技术是最重要的:

自然语言处理(NLP):

由于项目涉及语音和文字的处理,NLP技术是关键。它包括语音识别、意图识别、实体识别和语义理解等技术,用于解析用户输入并理解其意图和需求。

中医药膳学知识图谱构建与查询:

该技术用于构建中医药膳学知识图谱,并实现知识的查询和检索。通过知识图谱,系统可以更准确地提供药膳方案和健康建议。

用户个性化推荐:

个性化推荐技术可以根据用户的健康状况、喜好和历史数据,实现个性化的药膳食谱推荐和餐饮场所推荐。这有助于满足用户的个性化需求和提供更好的用户体验。对此我们采用了基于深度学习的内容推荐方法,从深度学习技术的应用展开阐述,介绍深度学习下的推荐算法研究成果。基于数据呈现多源异构,传统机器学习

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值