计算机算法分析与设计(20)---回溯法(0-1背包问题)


1. 题目描述

 对于给定的 n n n 个物品,第 i i i 个物品的重量为 W i W_i Wi,价值为 V i V_i Vi,对于一个最多能装重量 c c c 的背包,应该如何选择放入包中的物品,使得包中物品的总价值最大?

2. 算法思路

 1. 将问题转化为:

在这里插入图片描述
 2. 按照上述思路,先将各物品按照单位价值递减的顺序排序,其次进行判断是否在承重范围值内。
 定义: c w cw cw(current weight)表示当前重量, c p cp cp(current price)表示当前价值。
 根节点代表扩展结点 ,其余每一层代表一个物品,越靠近根节点,单位价值越高。选中该物品,即搜索左子树,进行判断。具体执行操作如下所示:

 (1)先计算所有物品的单位价值,将其进行降序排列。

 (2)排列之后,从根节点(扩展节点)出发。

 (3)搜索左子树,判断是否满足约束条件(物品是否装入背包):

       若选中该物品(可行解),cw+=w[i],cp+=p[i],继续向下遍历;

       直至遇到不可行解时,开始向上回溯,取出最后一个装入的物品,进入右子树。

 (4)进入右子树,首先计算当前节点的上界bound(i):

       若bound(i)小于bestp,剪去右子树,继续向上回溯;
       
       否则进行步骤(3)。

 (5)遇到叶子节点,比较当前价值与bestp,若cp>bestp,则bestp进行更新。

 (6)直到遍历完所有的节点(除剪枝部分外)。

3. 例题分析

 1. 例题1(手写):

在这里插入图片描述

注意:这里 u b ub ub 其实是松弛了一些,好好理解一下,因为是按照单位重量价值递减排序的!
虽然上面这样定义,但下面这个题算 u b ub ub 我们还是正常算。

在这里插入图片描述
 2. 例题2:假设 n = 3 n=3 n=3(有三件物品),三个物品的重量为 20 、 15 、 10 {20、15、10} 201510,三个物品的价值为 20 、 30 、 25 {20、30、25} 203025,对于一个最大承重为 25 25 25 的背包,求包中物品的组合最大的价值是多少?

在这里插入图片描述
 3. 例题2分析过程:对三件物品分别进行编号 1 , 2 , 3 1,2,3 123。初始情况背包是空的。

 (1)首先我们把 1 1 1 号物品放进背包里,此时背包里只有一件物品,总重量为 0 + 20 = 20 0+20=20 0+20=20,没有超过承重 25 25 25,因此可以将 1 1 1 号物品成功放入背包内。

 (2)接下来尝试把 2 2 2 号物品放入背包内,但是发现包中 1 1 1 号物品和 2 2 2 号物品的重量和为 20 + 15 = 35 20+15=35 20+15=35,超过了承重 25 25 25,因此不能把 2 2 2 号物品放入背包内。

 (3)接着考虑 3 3 3 号物品,此时包中只有 1 1 1 号物品。发现 1 1 1 号物品和 3 3 3 号物品的重量和为 20 + 10 = 30 20+10=30 20+10=30,超过了承重 25 25 25,因此 3 3 3 号物品也不能放入背包内。

 (4)由于只有 3 3 3 件物品,并且对于每一种物品我们都考虑过是否将其放入背包内,也就是找到了一种基本情况。找到一个基本情况后,我们就可以看看包里的物品的总价值了。这里包里只有一个 1 1 1 号物品,因此总价值为 20 20 20

 (5)重点来了!回溯过程:每次找出一种满足条件的基本情况就进行一次回溯,找到最后放入包中的物品并将其取出,接着考虑是否放入编号在这个物品之后的第一个物品。这里我们就把 1 1 1 号物品取出,接下来考虑是否放入 2 2 2 号物品。

 (6)取出 1 1 1 号物品后背包是空的,此时如果放入 2 2 2 号物品,背包总重量为 15 15 15,没有超过背包承重,因此把 2 2 2 号物品放入背包内。

 (7)类似地,考虑将 3 3 3 号物品放入背包内。由于 2 2 2 号物品和 3 3 3 号物品的重量和为 15 + 10 = 25 15+10=25 15+10=25,没有超过承重 25 25 25,因此将其放入背包内。

 (8)由于考虑完了 3 3 3 号物品,因此又找到了一个基本情况,记下此时包里物品的总价值,为 30 + 25 = 55 30+25=55 30+25=55。由于 55 55 55 高于上一种基本情况的总价值,因此将最优解更新为 55 55 55

 (9)进行一次回溯,取出背包中最后放入的物品,也就是 3 3 3 号物品。但是注意:当最后放入背包中的物品恰好是编号最大的物品时,需要额外进行一次回溯。为什么呢?因为编号最大的物品之后已经没有编号更大的物品了,因此没有可以考虑的下一种情况,只能在上一个层面上在进行一次回溯才能产生可能的最优解(此处不必考虑只放入2号物品的情况,因为一定不是最优解,原因可以自己思考一下)。 这里再回溯一次,也就是将倒数第二个放入包中的物品取出来,这里就取出 2 2 2 号物品。先后取出 3 3 3 号物品和 2 2 2 号物品之后包应该处于空的状态。

 (10)上一步中取出了 2 2 2 号物品,因此这一步直接考虑能否放入 3 3 3 号物品,简单的判断后即可得出可以放入,并且同上理也可以得出这是一种基本情况。但是由于包中只有 3 3 3 号物品,总价值为 25 25 25,没有超过当前的最优解 55 55 55,因此将该情况忽略。

 (11)最后一次回溯,取出包中的 3 3 3 号元素。由于此时包已经空了,并且最后一次取出的是编号最大的元素,那么说明算法已经完成了所有情况的遍历,算法终止, 55 55 55 是最优解。

4. 代码编写

// n=5, c=10, w={2, 2, 6, 5, 4}, v={6, 3, 5, 4, 6}的0-1背包问题的最优解和最优值。
#include <iostream>
using namespace std;
 
#define N 10
int w[N]; //重量
int v[N]; //价值
int x[N]; //1表放入背包,0表不放入
int n,c;  //n:物品个数 c:背包的最大容量
 
int cw=0; //当前物品总重
int cv=0; //当前物品总价值
 
int bestp=0;  //当前最大价值
int bestx[N]; //最优解
 
//回溯函数 k表示当前处在第几层做选择,k=1时表示决定是否将第一个物品放入背包
void backtrack(int k)
{//叶子节点,输出结果
   if(k>n)
   {
   //找到一个更优的解
     if(cv>bestp)
	 {  //保存更优的值和解
        bestp = cv;
        for(int i=1; i<=n; i++)
            bestx[i] = x[i];
     }
    }
   else
   {//遍历当前节点的子节点
     for(int i=0; i<=1; i++)
	 {
        x[k]=i;
        if(i==0)
		{
            backtrack(k+1);
        }
        else
		{  //约束条件:当前物品是否放的下
           if((cw+w[k])<=c)
		   {
             cw += w[k];
             cv += v[k];
             backtrack(k+1);
             cw -= w[k];
             cv -= v[k];
           }
        }
     }
  }
}
 
int main()
{
 
    cout<<"请输入物品的个数:";
    cin>>n;
    cout<<"请输入每个物品的重量及价值:"<<endl;
    for(int i=1;i<=n;i++)
    {
        cin>>w[i]>>v[i];
    }
    cout<<"请输入背包的限制容量:";
    cin>>c;
    backtrack(1);
    cout<<"最优值是:"<<bestp<<endl;
    cout<<"(";
    for(int i=1;i<=n;i++)
    {
    	cout<<bestx[i]<<" ";
	} 
    cout<<")";
    return 0;
}

在这里插入图片描述

  • 1
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
回溯法解0_1背包问题时,会用到状态空间树。在搜索状态空间树时,只要其左儿子结点是一个可行结点,搜索就进入其左子树。当右子树有可能包含最优解时才进入右子树搜索,否则将右子树剪去。设r是当前剩余物品价值总和;cp是当前价值;bestp是当前最优价值。当cp+r≤bestp时,可剪去右子树。计算右子树中解的上界可以用的方法是将剩余物品依其单位重量价值排序,然后依次装入物品,直至装不下时,再装入该物品的一部分而装满背包。由此得到的价值是右子树中解的上界,用此值来剪枝。 为了便于计算上界,可先将物品依其单位重量价值从大到小排序,此后只要顺序考察各物品即可。在实现时,由MaxBoundary函数计算当前结点处的上界。它是类Knap的私有成员。Knap的其他成员记录了解空间树种的节点信息,以减少函数参数的传递以及递归调用时所需要的栈空间。在解空间树的当前扩展结点处,仅当要进入右子树时才计算上界函数MaxBoundary,以判断是否可以将右子树减去。进入左子树时不需要计算上界,因为其上界与父结点的上界相同。 在调用函数Knapsack之前,需要先将各物品依其单位重量价值从达到小排序。为此目的,我们定义了类Objiect。其中,运算符与通常的定义相反,其目的是为了方便调用已有的排序算法。在通常情况下,排序算法将待排序元素从小到大排序。 在搜索状态空间树时,由函数Backtrack控制。在函数中是利用递归调用的方法实现了空间树的搜索
0-1背包问题是一个经典的组合优化问题,它的目标是在给定的一组物品中选择一些物品放入容量为C的背包中,使得背包中物品的总价值最大。这个问题可以使用回溯法来解决。 回溯法是一种通过搜索所有可能的解来求解问题的方法。在0-1背包问题中,我们可以使用回溯法来搜索所有可能的解向量Xi,然后选择其中价值最大的解向量作为最终的解。 具体来说,我们可以按照以下步骤来设计回溯法算法: 1. 定义一个解向量X,其中Xi表示第i个物品是否放入背包中。 2. 定义一个变量max_value,用于记录当前找到的最大价值。 3. 从第一个物品开始,依次考虑将其放入背包或不放入背包的情况。 4. 对于每种情况,计算当前的总价值,并与max_value进行比较。如果当前总价值大于max_value,则更新max_value。 5. 如果当前物品不是最后一个物品,则递归考虑下一个物品。 6. 如果当前物品是最后一个物品,则返回当前的总价值。 在实际实现中,我们可以使用一个递归函数来实现上述算法。具体来说,递归函数的参数包括当前的物品编号、当前的解向量X、当前的总重量和总价值、背包的容量C、以及当前找到的最大价值max_value。递归函数的返回值为当前的总价值。 下面是一个使用回溯法解决0-1背包问题的Python代码示例: ```python def backtrack(i, X, weight, value, C, max_value): if i == len(X): return value # 不放第i个物品 value1 = backtrack(i+1, X, weight, value, C, max_value) # 放第i个物品 if weight[i] <= C: X[i] = 1 value2 = backtrack(i+1, X, weight, value+value[i], C-weight[i], max_value) X[i] = 0 max_value = max(max_value, value2) return max(value1, max_value) # 测试代码 weight = [2, 3, 4, 5] value = [3, 4, 5, 6] C = 8 X = [0] * len(weight) max_value = backtrack(0, X, weight, 0, C, 0) print(max_value) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冒冒菜菜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值