模型框架修改:对SAM的具体完善

一、语义分割功能

         项目的核心大模型,但是没有提供文本指导的语义分割功能,结合BERT为其添加了语音分割功能。SAM模型(Segment Anything Model):用于图像的任意分割,可以生成高质量的分割掩码;BERT模型(Bidirectional Encoder Representations from Transformers):用于文本的语义理解,可以将自然语言文本转换为语义表示。具体操作如下:

1.文本编码

        使用预训练的BERT模型将文本描述编码为固定长度的语义向量。

from transformers import BertTokenizer, BertModel
import torch

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')

def encode_text(text):
    inputs = tokenizer(text, return_tensors='pt')
    outputs = model(**inputs)
    text_embedding = outputs.last_hidden_state[:, 0, :]
    return text_embedding

2.特征融合

        将图像特征与文本特征结合。可以在SAM模型中增加一个分支,用于处理文本特征,然后将文本特征与图像特征在某一层进行融合。

class EnhancedSAMModel(nn.Module):
    def __init__(self, sam_model, bert_model):
        super(EnhancedSAMModel, self).__init__()
        self.sam = sam_model
        self.bert = bert_model
        self.fc = nn.Linear(768, 256) 

    def forward(self, image, text):
        image_features = self.sam.extract_features(image)
        # 提取文本特征
        text_embedding = self.bert(text)['last_hidden_state'][:, 0, :]
        text_features = self.fc(text_embedding)

        combined_features = torch.cat((image_features, text_features), dim=1)
        segmentation_mask = self.sam.decode(combined_features)
        return segmentation_mask

3.推理过程

        在推理阶段,输入图像和文本描述,模型生成与文本描述相关的分割掩码。

def predict(image, text):
    enhanced_sam.eval()
    with torch.no_grad():
        segmentation_mask = enhanced_sam(image, text)
    return segmentation_mask

        通过上述步骤,可以将BERT模型的文本理解能力与SAM模型的图像分割能力结合,实现文本指导的语义分割功能。这种方法在数据集准备、模型架构设计和特征融合等方面进行了详细描述,确保模型能够有效学习和利用文本信息来指导图像分割。

二、参数剪枝量化

        剪枝是一种减少模型参数量的方法,通过移除不重要的权重来简化模型;量化将模型参数从32位浮点数转换为8位整数,从而减少模型的内存占用和计算开销。由于模型规模非常大,所以对参数进行剪枝量化,以便加快架构修改之后的后续训练速度,降低训练成本。步骤如下:

1.对模型进行剪枝:减少模型参数量,移除不重要的权重。

2.进行量化:将模型参数从32位浮点数转换为8位整数,以减少内存和计算开销。

        剪枝存在以下两种方法:

        1.全局剪枝:在整个模型范围内,根据权重的绝对值进行排序,剪掉一定比例的最小权重。

        2.局部剪枝:在每个层或每个卷积核内进行剪枝。

        其中全局剪枝代码实现如下:

import torch
import torch.nn.utils.prune as prune

def global_pruning(model, pruning_amount=0.2):
    parameters_to_prune = []
    for name, module in model.named_modules():
        if isinstance(module, torch.nn.Conv2d) or isinstance(module, torch.nn.Linear):
            parameters_to_prune.append((module, 'weight'))
    
    prune.global_unstructured(
        parameters_to_prune,
        pruning_method=prune.L1Unstructured,
        amount=pruning_amount,
    )

    for module, name in parameters_to_prune:
        prune.remove(module, name)

global_pruning(enhanced_sam, pruning_amount=0.2)

        量化存在以下两种方式:

        1.静态量化:静态量化在训练后进行,首先需要对模型进行校准,以获取激活值的范围,然后再进行量化。

import torch.quantization

def static_quantization(model, dataloader, calibration_steps=100):
    model.eval()
    model.qconfig = torch.quantization.get_default_qconfig('fbgemm')
    torch.quantization.prepare(model, inplace=True)

    with torch.no_grad():
        for i, (images, _, texts) in enumerate(dataloader):
            if i >= calibration_steps:
                break
            model(images, texts)

    torch.quantization.convert(model, inplace=True)

static_quantization(enhanced_sam, dataloader)

        2.动态量化:动态量化只对权重进行量化,在推理时动态量化激活值。

def dynamic_quantization(model):
    quantized_model = torch.quantization.quantize_dynamic(
        model, {torch.nn.Linear, torch.nn.Conv2d}, dtype=torch.qint8
    )
    return quantized_model

enhanced_sam_quantized = dynamic_quantization(enhanced_sam)

通过上述步骤,可以在保持模型性能的同时,显著加快训练速度并降低训练成本。

  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值