初识pandas库与缺失数据的补全
- 打开数据(csv文件、excel文件)
import pandas as pd # 导入pandas库
data=pd.read_csv(r'data.csv') # 读取csv文件
type(data) # 查看数据类型
data.head(10) # 查看前10行数据
data2=pd.read_excel(r'data.xlsx') # 读取excel文件
- 查看数据(尺寸信息、查看列名等方法)
data.info() # 列名、非空值、数据类型
data.shape # 查看数据形状
data.columns # 查看列名
data.dtypes # 查看数据类型
data.describe() # 查看数据描述性统计信息
data['Annual Income'] # 查看某一列数据
data['Annual Income','Spending Score'] # 查看某几列数据
data['Annual Income'].dtype # 查看某一列数据类型
- 查看空值
data.isnull() # 查看缺失值
data.isnull().sum() # 每列缺失值计数,sum方法为求每一列的和
- 众数、中位数填补空值
# 使用中位数填充缺失值
data['Annual Income']
type(data['Annual Income'])
median_income = data['Annual Income'].median() # 计算 'Annual Income' 列的中位数(会自动忽略 NaN 值)
data['Annual Income'].fillna(median_income, inplace=True) # 使用计算出的中位数填补该列的 NaN 值
data['Annual Income'].isnull().sum() # 检查下是否有缺失值
# 使用众数填充缺失值
import pandas as pd
data = pd.read_csv('data.csv') #需要重新读取一遍数据
mode = data['Annual Income'].mode()
# 这里返回了4个最多频次的值,我们一般保留第一个
mode = mode[0]
# 众数填补
data['Annual Income'].fillna(mode, inplace=True)
# 检查下是否有缺失值
data['Annual Income'].isnull().sum()
- 利用循环补全所有列的空值
data.columns
type(data.columns)
import numpy as np
c = data.columns.tolist()
type(c)
# 循环遍历c这个列表中的每一列
for i in c:
# 找到为数值型的列
if data[i].dtype != 'object': # 找到为数值型的列
if data[i].isnull().sum() > 0: # 找到存在缺失值的列
#计算该列的均值
mean_value = data[i].mean()
#用均值填充缺失值
data[i].fillna(mean_value, inplace=True)
data.isnull().sum()
@浙大疏锦行