Python金融大数据分析——Pandas库

一、DataFrame类

DataFrame是一种提供了列标签以及数据集中各行的索引功能,这些数据和来自SQL数据库表或Excel电子表格中工作表的数据相似

import pandas as pd

df=pd.DataFrame([10,20,30,40],columns=['number'],index=['a','b','c','d'])

以上是创建DataFrame对象的过程,特别指定了索引值和标签。这个例子体现了DataFrame在储存数据时数据本身可以用不同组成及类型(列表、元组、ndarray和字典对象等);数据以列的方式被组织,列名可自定义;索引的格式可以不同(数值、字符串、时间信息等)。因此,考虑到其总体上特点,在扩大现有对象等工作时刻考虑使用DataFrame。接下来介绍DataFrame的典型操作:

df.index
df.columns
df.loc['c']
df'loc[['a','b']]
df.iloc[1:3] #索引位置2、3行的数据

df.sum()
df.apply(lambda x: x**2) #向量化方式计算平方值
df**2 #类似ndarray对象直接应用向量化

df['price']=(1.5,2.5,3.5,4.5)
df['names']=pd.DataFrame(['Bean','Corn','Coal','Oil'])

df.append({'numbers':50,'price':7.0,'names':'apples'},index=['y',])
df=df.append({'numbers':60},index=['z',]) #填充不完整的数据

值得注意的是,即使DataFrame中存在遗漏的值,大部分方法调用仍可以正常使用,接下里进一步探究时间序列数据的更多功能

import numpy as np
np.random.seed(100)
a=np.random.standard_normal((9,4)) #生成标准正态分布随机数
df=pd.DataFrame(a,columns=['x','y','z','w'])

df.columns=['No1','No2','No3','No4']
df['No2'].mean()
df>0 #应用在整个DataFrame对象上的布尔运算
df['x']<0.5 #得到布尔型series数据
df[df['x']<0.5] #得原数据组的部分

上述例子展现了如何通过随机的dnarray列构造DataFrame的数据,因此pandas保留基本结构,只添加元信息。除此之外,pandas的另一优势在于可以很方便地生成时间索引对象dates。

dates=pd.date_range('2019-1-1',periods=9,freq='M')
##date_range()参数:start\end\periods\freq\name
##freq->B\C\D\W\M\Q\A\H\T\S
df.index=dates

df.values
df.array(df)

下方代码表示从DataFrame到ndarray数据的转变,反方向可以用DataFrame函数。

1.1基于DataFrame的基本操作

一般而言,在NumPy通用函数适用于ndarray对象则可以将这些函数应用到DataFrame对象,即使运算过程中存在不完整数据集,pandas也可以放入NaN值继续运算,接下来介绍几个内建方法。

df.info() #提供关于数据、列和索引的元信息
df.describe() #每列汇总统计信息(平均、最大小值、标准差等)
df.head()
df.tail()

df.sum()
df.mean() #axis=0行求和 axis=1列求和
df.cumsum()

#用NumPy通用函数
np.sqrt(abs(df)).sum()

基本可视化

from pylab import plt,mpl
plt.style.use('seaborn')#定制绘图样式
mpl.rcParams['font.family']='serif'

df.cumsum.plot(lw=2.0,figsize=(10,6))

plot.bar() #绘制柱状图

以上为利用简单plot()函数绘图的方法,事实上pandas自带的matplotlib也可以绘图,具体内容在未来的章节中再讨论。

联接、连接和合并

联接(Concatenation)是指将一个DataFrame对象中的行添加到另一个DataFrame对象

df1.append(df2,ignore_index=True,sort=False)
#将df2作为新行添加到df1下,ignore_index表示展示时是否保留标签
pd.concat((df1,df2),sort=False)

连接是指默认第一个DataFrame对象的索引值

df1.join(df2,how='left') #保留df1索引

df1.join(df2,how='right') #保留df2索引

df1.join(df2,how='inner') #保留相同索引

df1.join(df2,how='outer') #保留全部索引

df=pd.DataFrame({'A':df1['A'],'B':df2['B']}) #和outer相同

合并是指在两个数据集共享的某列上进行,即只保留有该列中共有的索引值,不展开。

二、series类

series类只有一列数据,因此他可以看作DataFrame类的特例。例如前面示例中提到的布尔运算所得结果就是布尔型series数据。

S=pd.Series(np.linspace(0,15,7),name='series')
s=df['No1']

s.mean()#DataFrame方法也适用于series

series类可以很好地体现pandas强大而灵活的分组功能

df['Quarter']=['Q1','Q2','Q2','Q3','Q3','Q3']#给数据增加一维分类指标
groups=df.groupby('Quarter')
df['Odd_Even']=['Odd','Even','Odd','Even','Odd','Even']#第二维分类指标

#以下操作的结果将以每组为单位展示
groups.size()
groups.mean()
groups.max()
groups.aggregate([min,max]) #给出每组最小最大值
groups.aggregate([sum,np.mean]) #展示每组求和和平均值

本文为个人学习《Python金融大数据分析》一文所得,若有不妥谬误之处还望温和批评指正。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Python凭借其简单、易读、可扩展性以及拥有巨大而活跃的科学计算社区,在需要分析、处理大量数据的金融行业得到了广泛而迅速的应用,并且成为该行业开发核心应用的shouxuan编程语言。《Python金融大数据分析》提供了使用Python进行数据分析,以及开发相关应用程序的技巧和工具。 《Python金融大数据分析》总计分为3部分,共19章,第1部分介绍了Python金融学中的应用,其内容涵盖了Python用于金融行业的原因、Python的基础架构和工具,以及Python在计量金融学中的一些具体入门实例;第2部分介绍了金融分析和应用程序开发中zui重要的Python、技术和方法,其内容涵盖了Python的数据类型和结构、用matplotlib进行数据可视化、金融时间序列数据处理、高性能输入/输出操作、高性能的Python技术和金融学中需要的多种数学工具、随机数生成和随机过程模拟、Python统计学应用、Python和Excel的集成、Python面向对象编程和GUI的开发、Python与Web技术的集成,以及基于Web应用和Web服务的开发;第3部分关注的是蒙特卡洛模拟期权与衍生品定价实际应用的开发工作,其内容涵盖了估值框架的介绍、金融模型的模拟、衍生品的估值、投资组合的估值、波动率期权等知识。 《Python金融大数据分析》适合对使用Python进行大数据分析、处理感兴趣的金融行业开发人员阅读.
### 回答1: Pandas是一个Python,用于数据处理和分析。在数据分析中,预处理是非常重要的一步,因为它可以帮助我们清洗和转换数据,使其更适合进行分析Pandas提供了一些强大的预处理功能,包括数据清洗、数据转换、数据重塑和数据合并等。在使用Pandas进行数据分析时,预处理是必不可少的一步。 ### 回答2: 在数据分析中,数据的预处理是一个必要的过程。它的主要目的是清洗数据,准备数据,以便后续分析。在Python中,pandas是一种广泛使用的数据处理pandas可以通过其高效的数据结构和操作方法来清洗和处理数据。在本文中,将介绍pandas预处理的一些常见技术。 一、读取数据 在pandas中,使用read_csv()函数读取CSV格式的数据文件,read_excel()函数读取Excel格式的数据文件。它们都有很多选项,可以根据具体文件的格式进行设置。 二、查看数据 在pandas中,使用以下函数来查看数据: 1. head() - 显示数据框的前几行; 2. tail() - 显示数据框的后几行; 3. columns - 显示数据框的列名; 4. shape - 显示数据框的行列数; 5. info() - 显示数据框的基本信息,包括每列的名称、非空值数量和数据类型。 三、数据清洗 在数据清洗中,有以下一些常见的技术: 1. 删除重复行:使用drop_duplicates()函数; 2. 替换空值:使用fillna()函数; 3. 删除空值:使用dropna()函数; 4. 更改数据类型:使用astype()函数。 四、数据准备 在数据准备中,有以下一些常见的技术: 1. 数据合并:使用merge()函数; 2. 数据筛选:使用loc()函数或者iloc()函数; 3. 数据分组:使用groupby()函数; 4. 数据排序:使用sort_values()函数。 五、数据分析 在数据分析中,有以下一些常见的技术: 1. 数据聚合:使用agg()函数; 2. 统计描述:使用describe()函数; 3. 数据可视化:使用matplotlib或者seaborn。 综上所述,pandas预处理是数据分析中必不可少的一步。通过使用pandas提供的函数和方法,可以方便地清理和处理数据,使其更容易被分析。 ### 回答3: PandasPython中最强大的数据处理之一,它提供了DataFrame和Series这两种数据结构,可以快速便捷地处理数据。在数据分析过程中,我们往往需要先对数据进行预处理,以便后续的分析Pandas提供了一系列的方法和函数,可以帮助我们进行数据的预处理。 首先,在进行数据分析之前,我们需要了解自己所面对的数据类型和数据结构。Pandas中的DataFrame结构就是类似于表格的结构,每一行代表一个样本,每一列代表一个属性。Series则是一维的数组结构。通过pandas.read_csv(),我们可以读取CSV格式的数据,并转化为DataFrame结构。 接下来,我们要对数据进行一些基本的处理,例如数据清洗、数据去重、缺失值处理、异常值处理等。在数据清洗过程中,我们往往需要对数据进行一些特殊的处理,例如字符串的分割、合并、替换等操作,Pandas提供了一系列能够对文本进行操作的函数。在数据去重方面,我们可以使用drop_duplicates()函数,它可以去除DataFrame中的重复记录。在处理缺失值时,Pandas提供了一系列的函数,如fillna()函数、dropna()函数,可以方便地将NaN值变为其他有意义的值,或者删除缺失值的行或列。在异常值处理方面,我们可以使用isoutlier()函数来找到数据中的异常值,并进行处理。 在数据预处理完成后,我们可以对数据进行一些统计分析,例如计算小计、计算总计、分位数、极差、方差、标准差等统计指标。我们可以使用describe()函数来获得数据的统计描述,还可以使用groupby()函数来对数据分组,使用agg()函数对每组进行计算统计指标。此外,我们还可以对数据进行排序、丢弃、合并等操作。 总之,Pandas是一个非常强大的Python,可以轻松处理数据预处理和数据处理方面的任务。Pandas作为数据分析和数据处理的基础,使用熟练后可以在数据分析中发挥更大的作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值