CINTA 作业5

1.证明:命题9.1
ϕ : G → H \phi:\mathbb{G}\rightarrow\mathbb{H} ϕ:GH从群 H \mathbb{H} H的一种同构映射,则一下命题为真:
1. ϕ − 1 \phi^{-1} ϕ1: H → G \mathbb{H}\rightarrow\mathbb{G} HG也是同构;
2.| G \mathbb{G} G|=| H \mathbb{H} H|;
3.如果 G \mathbb{G} G是阿贝尔群,则 H \mathbb{H} H也是阿贝尔群。
4.如果 G \mathbb{G} G是循环群,则 H \mathbb{H} H也是循环群;
5.如果 G \mathbb{G} G有阶为n的子群,则 H \mathbb{H} H也为阶为n的子群。

证明:
(1) 因为 ϕ : G → H \phi:\mathbb{G}\rightarrow\mathbb{H} ϕ:GH为同构映射,所以 ϕ \phi ϕ是双射,所以存在反函数. ϕ − 1 \phi^{-1} ϕ1,并且也是双射。根据定义,所以 ϕ − 1 \phi^{-1} ϕ1: H → G \mathbb{H}\rightarrow\mathbb{G} HG也是同构;
(2)因为 ϕ : G → H \phi:\mathbb{G}\rightarrow\mathbb{H} ϕ:GH是同构映射,是一种双射,所以元素一一对应。所以| G \mathbb{G} G|=| H \mathbb{H} H|;
(3) 因为 ϕ : G → H \phi:\mathbb{G}\rightarrow\mathbb{H} ϕ:GH为同构映射,并且 G \mathbb{G} G是阿贝尔群,所以 ϕ ( a ○ b ) = ϕ ( a ) ∗ ϕ ( b ) = ϕ ( b ○ a ) = ϕ ( b ) ∗ ϕ ( a ) \phi(a○b)=\phi(a)*\phi(b)=\phi(b○a)=\phi(b)*\phi(a) ϕ(ab)=ϕ(a)ϕ(b)=ϕ(ba)=ϕ(b)ϕ(a)。所以有 ϕ ( a ) ∗ ϕ ( b ) = ϕ ( b ) ∗ ϕ ( a ) \phi(a)*\phi(b)=\phi(b)*\phi(a) ϕ(a)ϕ(b)=ϕ(b)ϕ(a)。所以 H \mathbb{H} H也是阿贝尔群。
(4) 因为 G \mathbb{G} G为循环群,所以存在g为 G \mathbb{G} G的生成元,又因为 G \mathbb{G} G为群,具有封闭性,所以 ϕ ( g 2 ) = ϕ ( g ○ g ) = ϕ ( g ) ∗ ϕ ( g ) \phi(g^{2})=\phi(g○g)=\phi(g)*\phi(g) ϕ(g2)=ϕ(gg)=ϕ(g)ϕ(g),所以可以得到得到: ϕ ( g n ) = ϕ ( g ) n \phi(g^{n})=\phi(g)^{n} ϕ(gn)=ϕ(g)n,所以存在 ϕ ( g ) \phi(g) ϕ(g) H \mathbb{H} H的生成元,因此, H \mathbb{H} H也是循环群。
(5) 设 G ′ \mathbb{G}^{'} G G \mathbb{G} G的n阶子群,所以任意的a,b∈ G \mathbb{G} G, a-1,b-1,ab属于 G ′ \mathbb{G}^{'} G,所以对于 H \mathbb{H} H,我们可以得到 ϕ ( a ) , ϕ ( b ) ∈ G , ϕ ( a − 1 ) , ϕ ( b − 1 ) ∈ G ′ \phi(a),\phi(b)∈\mathbb{G}, \phi(a^{-1}),\phi(b^{-1})∈\mathbb{G}^{'} ϕ(a)ϕ(b)G,ϕ(a1)ϕ(b1)G同理e也对应 ϕ ( e ) \phi(e) ϕ(e)。所以存在 H ′ \mathbb{H}^{'} H H \mathbb{H} H的子群,并且根据(2)可知阶数为n。
2.所有无限阶的循环群都同构于群 Z \mathbb{Z} Z
证明:设群 G 是一个无限阶的循环群,g ∈ G 是生成元。定义 ϕ : Z → G 为 ϕ : n → gn。则 ϕ ( m + n ) = g m + n = g m g n = ϕ ( m ) ϕ ( n ) 。 ϕ(m + n) = g^{m+n} = g^{m}g^{n} = ϕ(m)ϕ(n)。 ϕ(m+n)=gm+n=gmgn=ϕ(m)ϕ(n) 然后,证明 ϕ 是双射。
(1)证明单射:任取a , b ∈ Z \mathbb{Z} Z,若 ϕ ( a ) = ϕ ( b ) \phi(a)=\phi(b) ϕ(a)=ϕ(b),即 g a = g b g^{a}=g^{b} ga=gb,因为 G \mathbb{G} G为无限循环群,所以a=b,则 ϕ \phi ϕ是单射。
(2) 证明满射: 任 取 g x ∈ Z 任取g^{x}∈\mathbb{Z} gxZ,则存在x∈ Z \mathbb{Z} Z,使得 ϕ ( x ) = g x \phi(x)=g^{x} ϕ(x)=gx,所以 ϕ \phi ϕ是满射。
综上, ϕ \phi ϕ是双射。证明完毕!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Showball.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值