CINTA作业九

CINTA作业九

1.证明命题 11.2。
证明:
(1)封闭性:
∀   a , b ∈ Q R p   , ∃   x , y ∈ Z x 2 ≡ a ( m o d   p ) , y 2 ≡ b ( m o d   p )   , 则 a × b ≡ x 2 × y 2 = ( x × y ) 2 故 a × b ∈ Q R p \forall\ a,b\in QR_p\ ,\exist\ x,y\in Z\\ x^2\equiv a(mod\ p),y^2\equiv b(mod \ p)\ ,\\ 则a\times b\equiv x^2\times y^2=(x\times y)^2\\ 故a\times b\in QR_p  a,bQRp , x,yZx2a(mod p),y2b(mod p) ,a×bx2×y2=(x×y)2a×bQRp

(2)结合律:
∀   a , b , c ∈ Q R p   , ∃   x , y , z ∈ Z x 2 ≡ a ( m o d   p ) , y 2 ≡ b ( m o d   p )   , z 2 ≡ c ( m o d   p ) 则 ( a × b ) × c ≡ x 2 × y 2 × z 2 = a × ( b × c ) \forall\ a,b,c\in QR_p\ ,\exist\ x,y,z\in Z\\x^2\equiv a(mod\ p),y^2\equiv b(mod \ p)\ ,z^2\equiv c(mod\ p)\\ 则(a\times b)\times c\equiv x^2\times y^2\times z^2=a\times(b\times c)  a,b,cQRp , x,y,zZx2a(mod p),y2b(mod p) ,z2c(mod p)(a×b)×cx2×y2×z2=a×(b×c)

(3)单位元:1

(4)逆元:
对于任意的a∈QR,由封闭性和费马小定理得
∃ a p − 2 ∈ Q R p ,   使 a × a p − 2 = a p − 1 ≡ 1 ( m o d   p ) \exist a^{p-2}\in QR_p,\ 使a\times a^{p-2}=a^{p-1}\equiv1(mod \ p) ap2QRp, 使a×ap2=ap11(mod p)

2.使用群论的方法证明定理 11.1。
构造一个映射 ϕ : Z p ∗ → Q R p 为 a → a 2 , ∀ a ∈ Z p ∗ \phi:Z^*_p\rightarrow QR_p为a\rightarrow a^2,\forall a\in Z^*_p ϕ:ZpQRpaa2,aZp Q R p QR_p QRp的定义可知该映射是一个满射,
又由 ϕ ( a b ) = ( a b ) 2 = a 2 b 2 = ϕ ( a ) ϕ ( b ) \phi(ab)=(ab)^2=a^2b^2=\phi(a)\phi(b) ϕ(ab)=(ab)2=a2b2=ϕ(a)ϕ(b)可知 ϕ \phi ϕ是一个群同态
K = k e r ϕ = { 1 , p − 1 } K=ker\phi=\{1,p-1\} K=kerϕ={1,p1},构造一个标准同态 ψ : Z p ∗ → Z p ∗ / K \psi :Z^*_p\rightarrow Z^*_p/K ψ:ZpZp/K
由第一同构定理可得 Z p ∗ / K ≅ Q R p Z^*_p/K\cong QR_p Zp/KQRp,则有 ∣ Q R p ∣ = ∣ Z p ∗ / K ∣ = ( p − 1 ) / 2 |QR_p|=|Z^*_p/K|=(p-1)/2 QRp=Zp/K=(p1)/2

3.定义映射 ψ : Z p ∗ → { − 1 , + 1 } 为 ψ ( a ) = ( a / p ) , ∀ a ∈ Z p ∗ \psi :Z^*_p\rightarrow\{-1,+1\}为\psi(a)=(a/p),\forall a\in Z^*_p ψ:Zp{1,+1}ψ(a)=(a/p)aZp。请证明这是一个满同态。

默认 p p p是一个奇素数,由定理11.1得存在 ( p − 1 ) / 2 (p −1)/2 (p1)/2个模 p p p Q R QR QR ( p − 1 ) / 2 (p −1)/2 (p1)/2个模 p p p Q N R QNR QNR,故映射 ψ \psi ψ是满射

由勒让德符号的属性得
∀ a , b ∈ Z p ∗ ,   ψ ( a b ) = ( a b / p ) = ( a / p ) ( b / p ) = ψ ( a ) ψ ( b ) \forall a,b\in Z^*_p,\ \psi(ab)=(ab/p)=(a/p)(b/p)=\psi(a)\psi(b) a,bZp, ψ(ab)=(ab/p)=(a/p)(b/p)=ψ(a)ψ(b),故 ψ \psi ψ是满同态

4.设 p 是奇素数,证明 Z p ∗ Z^*_p Zp的所有生成元都是模 p 的二次非剩余。

使用反证法:假设 Z p ∗ Z^*_p Zp的所有生成元都是模 p 的二次剩余。
令g是 Z p ∗ Z^*_p Zp的一个生成元,且g是GR,则 ∃ a ∈ Z , g ≡ a 2 ( m o d   p ) \exist a\in Z,g\equiv a^2(mod \ p) aZ,ga2(mod p)
结合费马小定理有 g ( p − 1 ) / 2 ≡ a 2 ( p − 1 ) / 2 = a p − 1 ≡ 1 ( m o d   p ) g^{(p-1)/2} \equiv a^{2(p-1)/2}=a^{p-1}\equiv 1(mod\ p) g(p1)/2a2(p1)/2=ap11(mod p),这与生成元g的阶p-1相矛盾

Z p ∗ Z^*_p Zp的所有生成元都是模 p 的二次非剩余

5、证明命题11.4
1、
①当a是QR时, ∃ x ∈ Z , a ≡ b ≡ x 2 ( m o d   p ) \exist x\in Z,a\equiv b \equiv x^2(mod\ p) xZ,abx2(mod p),故b也是QR,所以 ( a / p ) = ( b / p ) = 1 (a/p)=(b/p)=1 (a/p)=(b/p)=1
②当 a 是 Q N R 时 ,则 a ≡ b ≡ x 2 ( m o d   p ) a\equiv b\equiv x^2 ( mod\ p ) abx2(mod p)无 解,故b也是QNR,所以 ( a / p ) = ( b / p ) = − 1 (a/p)=(b/p)=-1 (a/p)=(b/p)=1

2、
由命题11.3
①当a,b均为QR时,ab也是QR,故 ( a / p ) ( b / p ) = 1 = ( a b / p ) (a/p)(b/p)=1=(ab/p) (a/p)(b/p)=1=(ab/p)
②当a,b均为QNR时,ab是QR,故 ( a / p ) ( b / p ) = ( − 1 ) ( − 1 ) = 1 = ( a b / p ) (a/p)(b/p)=(-1)(-1)=1=(ab/p) (a/p)(b/p)=(1)(1)=1=(ab/p)
③当a,b其中一个为QR,一个为QNR时,ab是QNR,故 ( a / p ) ( b / p ) = ( − 1 ) 1 = − 1 = ( a b / p ) (a/p)(b/p)=(-1)1=-1=(ab/p) (a/p)(b/p)=(1)1=1=(ab/p)
综上 ( a / p ) ( b / p ) = ( a b / p ) (a/p)(b/p)=(ab/p) (a/p)(b/p)=(ab/p)

3、无论a是QR或QNR, a 2 a^2 a2都是QR,所以 ( a 2 / p ) = 1 (a^2/p)=1 (a2/p)=1

6、给出推论11.1的完整证明
p ≡ 1 ( m o d   4 ) p\equiv 1(mod\ 4) p1(mod 4)时,存在 k ∈ Z k\in Z kZ,使得 p = 4 k + 1 p=4k+1 p=4k+1,根据欧拉准则
( − 1 / p ) ≡ ( − 1 ) ( p − 1 ) / 2 = ( − 1 ) ( 4 k + 1 − 1 ) / 2 = 1 ( m o d   p ) (-1/p)\equiv(-1)^{(p-1)/2}=(-1)^{(4k+1-1)/2}=1(mod\ p) (1/p)(1)(p1)/2=(1)(4k+11)/2=1(mod p)

p ≡ − 1 ( m o d   4 ) p\equiv -1(mod\ 4) p1(mod 4)时,存在 k ∈ Z k\in Z kZ,使得 p = 4 k − 1 p=4k-1 p=4k1,根据欧拉准则
( − 1 / p ) ≡ ( − 1 ) ( p − 1 ) / 2 = ( − 1 ) ( 4 k − 1 − 1 ) / 2 = ( − 1 ) 2 k − 1 = − 1 ( m o d   p ) (-1/p)\equiv(-1)^{(p-1)/2}=(-1)^{(4k-1-1)/2}=(-1)^{2k-1}=-1(mod\ p) (1/p)(1)(p1)/2=(1)(4k11)/2=(1)2k1=1(mod p)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值