顺序:
1.先自己敲代码发现不会
2.看思路题解,不要看具体代码
3.再敲,看能不能通过,找问题
4.发现还是不想,对比看具体代码
复习C++和数据结构哈希表,容器内容
哈希表理论基础
哈希表是根据关键码的值而直接进行访问的数据结构。
这么这官方的解释可能有点懵,其实直白来讲其实数组就是一张哈希表。
哈希表中关键码就是数组的索引下标,然后通过下标直接访问数组中的元素,如下图所示:
那么哈希表能解决什么问题呢,一般哈希表都是用来快速判断一个元素是否出现集合里。
例如要查询一个名字是否在这所学校里。
要枚举的话时间复杂度是O(n),但如果使用哈希表的话, 只需要O(1)就可以做到。
我们只需要初始化把这所学校里学生的名字都存在哈希表里,在查询的时候通过索引直接就可以知道这位同学在不在这所学校里了。
将学生姓名映射到哈希表上就涉及到了hash function ,也就是哈希函数。
哈希函数
哈希函数,把学生的姓名直接映射为哈希表上的索引,然后就可以通过查询索引下标快速知道这位同学是否在这所学校里了。
哈希函数如下图所示,通过hashCode把名字转化为数值,一般hashcode是通过特定编码方式,可以将其他数据格式转化为不同的数值,这样就把学生名字映射为哈希表上的索引数字了。
如果hashCode得到的数值大于 哈希表的大小了,也就是大于tableSize了,怎么办呢?
此时为了保证映射出来的索引数值都落在哈希表上,我们会在再次对数值做一个取模的操作,就要我们就保证了学生姓名一定可以映射到哈希表上了。
此时问题又来了,哈希表我们刚刚说过,就是一个数组。
如果学生的数量大于哈希表的大小怎么办,此时就算哈希函数计算的再均匀,也避免不了会有几位学生的名字同时映射到哈希表 同一个索引下标的位置。
接下来哈希碰撞登场。
哈希碰撞
如图所示,小李和小王都映射到了索引下标 1 的位置,这一现象叫做哈希碰撞。
一般哈希碰撞有两种解决方法, 拉链法和线性探测法。
拉链法
刚刚小李和小王在索引1的位置发生了冲突,发生冲突的元素都被存储在链表中。 这样我们就可以通过索引找到小李和小王了
(数据规模是dataSize, 哈希表的大小为tableSize)
其实拉链法就是要选择适当的哈希表的大小,这样既不会因为数组空值而浪费大量内存,也不会因为链表太长而在查找上浪费太多时间。
线性探测法
使用线性探测法,一定要保证tableSize大于dataSize。 我们需要依靠哈希表中的空位来解决碰撞问题。
例如冲突的位置,放了小李,那么就向下找一个空位放置小王的信息。所以要求tableSize一定要大于dataSize ,要不然哈希表上就没有空置的位置来存放 冲突的数据了。如图所示:
常见的三种哈希结构
当我们想使用哈希法来解决问题的时候,我们一般会选择如下三种数据结构。
· 数组
· set (集合)
· map(映射)
这里数组就没啥可说的了,我们来看一下set。
在C++中,set 和 map 分别提供以下三种数据结构,其底层实现以及优劣如下表所示:
std::unordered_set底层实现为哈希表,std::set 和std::multiset 的底层实现是红黑树,红黑树是一种平衡二叉搜索树,所以key值是有序的,但key不可以修改,改动key值会导致整棵树的错乱,所以只能删除和增加。
std::unordered_map 底层实现为哈希表,std::map 和std::multimap 的底层实现是红黑树。同理,std::map 和std::multimap 的key也是有序的(这个问题也经常作为面试题,考察对语言容器底层的理解)。
当我们要使用集合来解决哈希问题的时候,优先使用unordered_set,因为它的查询和增删效率是最优的,如果需要集合是有序的,那么就用set,如果要求不仅有序还要有重复数据的话,那么就用multiset。
那么再来看一下map ,在map 是一个key value 的数据结构,map中,对key是有限制,对value没有限制的,因为key的存储方式使用红黑树实现的。
其他语言例如:java里的HashMap ,TreeMap 都是一样的原理。可以灵活贯通。
虽然std::set、std::multiset 的底层实现是红黑树,不是哈希表,std::set、std::multiset 使用红黑树来索引和存储,不过给我们的使用方式,还是哈希法的使用方式,即key和value。所以使用这些数据结构来解决映射问题的方法,我们依然称之为哈希法。 map也是一样的道理。
这里在说一下,一些C++的经典书籍上 例如STL源码剖析,说到了hash_set hash_map,这个与unordered_set,unordered_map又有什么关系呢?
实际上功能都是一样一样的, 但是unordered_set在C++11的时候被引入标准库了,而hash_set并没有,所以建议还是使用unordered_set比较好,这就好比一个是官方认证的,hash_set,hash_map 是C++11标准之前民间高手自发造的轮子。
总结
总结一下,当我们遇到了要快速判断一个元素是否出现集合里的时候,就要考虑哈希法。
但是哈希法也是牺牲了空间换取了时间,因为我们要使用额外的数组,set或者是map来存放数据,才能实现快速的查找。
如果在做面试题目的时候遇到需要判断一个元素是否出现过的场景也应该第一时间想到哈希法!
242.有效的字母异位词
题目链接/文章讲解/视频讲解: https://programmercarl.com/0242.%E6%9C%89%E6%95%88%E7%9A%84%E5%AD%97%E6%AF%8D%E5%BC%82%E4%BD%8D%E8%AF%8D.html
想法
可不可以暴力,将一个单词的所有字母及其出现的次数都记录,然后和下一个单词对比
疑问点
如何将不同字母数量的单词记录
解法
哈希解法
定义一个能代表所有字母的数组,然后如果s单词中出现了对应字母,则将数组中代表此字母的元素值加一,如果t单词中出现了对应字母,则将数组中代表此字母的元素值减一,最后循环检测这个数组元素值是否都为0,若都为0则返回true,不是则返回false;
数组其实就是一个简单哈希表,而且这道题目中字符串只有小写字符,那么就可以定义一个数组,来记录字符串s里字符出现的次数。需要定义一个多大的数组呢,定一个数组叫做record,大小为26 就可以了,初始化为0,因为字符a到字符z的ASCII也是26个连续的数值。
如何将字符映射到数组也就是哈希表的索引下标上,因为字符a到字符z的ASCII是26个连续的数值,所以字符a映射为下标0,相应的字符z映射为下标25。
再遍历 字符串s的时候,只需要将 s[i] - ‘a’ 所在的元素做+1 操作即可,并不需要记住字符a的ASCII,只要求出一个相对数值就可以了。 这样就将字符串s中字符出现的次数,统计出来了。
那看一下如何检查字符串t中是否出现了这些字符,同样在遍历字符串t的时候,对t中出现的字符映射哈希表索引上的数值再做-1的操作。
那么最后检查一下,record数组如果有的元素不为零0,说明字符串s和t一定是谁多了字符或者谁少了字符,return false。
错解
bool isAnagram(char * s, char * t){
int hash[26];//int hash[26]=0;
int i;
for(i=0;s[i]!=NULL;i++){
hash[s[i]-'a']++;
}
for(i=0;t[i]!=NULL;i++){
hash[t[i]-'a']--;
}
for(i=0;i<26;i++){
if(hash[i]!=0)
return false;
}
return true;
}
错误在没有把hash[26]初始化为0
349. 两个数组的交集
题目链接/文章讲解/视频讲解:https://programmercarl.com/0349.%E4%B8%A4%E4%B8%AA%E6%95%B0%E7%BB%84%E7%9A%84%E4%BA%A4%E9%9B%86.html
想法
int* intersection(int* nums1, int nums1Size, int* nums2, int nums2Size, int* returnSize){
int *result=NULL;
while(nums1!=NULL){
while(nums2!=NULL){
if(*nums2==*nums1){
*result=*nums1;
break;
}
nums2++;
}
nums1++;
}
return result;
}
错误:
不知道如何建立一个能储存数据的新数组
没有返回数组大小
解法
注意题目特意说明:输出结果中的每个元素一定是唯一的,也就是说输出的结果的去重的, 同时可以不考虑输出结果的顺序
但是要注意,使用数组来做哈希的题目,是因为题目都限制了数值的大小。(数值不会太大)
而这道题目没有限制数值的大小,就无法使用数组来做哈希表了。
而且如果哈希值比较少、特别分散、跨度非常大,使用数组就造成空间的极大浪费。
此时就要使用另一种结构体了,set
int* intersection(int* nums1, int nums1Size, int* nums2, int nums2Size, int* returnSize){
int *result=malloc(sizeof(int)*nums1Size);//result数组是要存储元素的,必须分配空间
int hash[1001]={0};//将哈希表初始化为0
int i;
int count=0;//由于最后要返回数组大小,将头指针看为数组名,count作为数组下标移动
for(i=0;i<nums1Size;i++){
hash[nums1[i]]++;//将第一个数组中出现过的数字对应在哈希表中,注意这里时hash[nums1[i]]
}
for(i=0;i<nums2Size;i++){
if(hash[nums2[i]]!=0)//检测到第二个数组中出现的数字在第一个数组中出现过
{
result[count]=nums2[i];//将这个数字存入结果数组中
count++;//后移数组
hash[nums2[i]]=0;//且将该数组赋值为0,以便不会重复出现
}
*returnSize=count;//返回结果数组的大小
}return result;
}
202. 快乐数
题目链接/文章讲解:https://programmercarl.com/0202.%E5%BF%AB%E4%B9%90%E6%95%B0.html
想法
没有想法,感觉可以用递归,但是不知道怎么处理无限循环的问题
bool isHappy(int n){
int i;
int sum=0;
for(i=0;i<100;i++){
while(n){
sum+=(n%10)*(n%10);
n=n/10;
}
if(sum==1)
return true;
}
return false;
}
错误:
1.在一次sum=各位平方和后,n没有=sum,sum没有归到0;
2.在1操作之后,由于sum已经归0,只有n=sum,为需要对比的值,则下面判断条件应该为if(n==1)return true;
解法:
bool isHappy(int n){
int ans=0;
for(int i = 0 ; i< 100;i++)//表示将此数暴力循环各位平方和100次看能否有和为1的情况
{
while(n>0)
{
ans += (n%10)*(n%10);//求最低位平方和
n = n /10;//换前一位进入循环,求平方和
}
n = ans;
ans = 0;
if(n == 1)
{
return true;
}
}
return false;
}
1. 两数之和
题目链接/文章讲解/视频讲解:https://programmercarl.com/0001.%E4%B8%A4%E6%95%B0%E4%B9%8B%E5%92%8C.html
想法
int* twoSum(int* nums, int numsSize, int target, int* returnSize){
static int result[2]={0};
int i,j;
for(i=0;i<numsSize-1;i++){
for(j=i+1;j<numsSize;j++){
if(nums[i]+nums[j]==target){
result[0]=i;
result[1]=j;
}
}
}
*returnSize=2;
return result;
}
已通过
另一解法
哈希表法
需要一个集合来存放我们遍历过的元素,然后在遍历数组的时候去询问这个集合,某元素是否遍历过,也就是 是否出现在这个集合。
那么我们就应该想到使用哈希法了。
因为本地,我们不仅要知道元素有没有遍历过,还有知道这个元素对应的下标,需要使用 key value结构来存放,key来存元素,value来存下标,那么使用map正合适。
再来看一下使用数组和set来做哈希法的局限。
· 数组的大小是受限制的,而且如果元素很少,而哈希值太大会造成内存空间的浪费。
· set是一个集合,里面放的元素只能是一个key,而两数之和这道题目,不仅要判断y是否存在而且还要记录y的下标位置,因为要返回x 和 y的下标。所以set 也不能用。
· 此时就要选择另一种数据结构:map ,map是一种key value的存储结构,可以用key保存数值,用value在保存数值所在的下标。
这道题目中并不需要key有序,选择std::unordered_map 效率更高!
接下来需要明确两点:
map用来做什么
map中key和value分别表示什么
map目的用来存放我们访问过的元素,因为遍历数组的时候,需要记录我们之前遍历过哪些元素和对应的下表,这样才能找到与当前元素相匹配的(也就是相加等于target)
接下来是map中key和value分别表示什么。
这道题 我们需要 给出一个元素,判断这个元素是否出现过,如果出现过,返回这个元素的下标。
那么判断元素是否出现,这个元素就要作为key,所以数组中的元素作为key,有key对应的就是value,value用来存下标。
所以 map中的存储结构为 {key:数据元素,value:数组元素对应的下表}。
在遍历数组的时候,只需要向map去查询是否有和目前遍历元素比配的数值,如果有,就找到的匹配对,如果没有,就把目前遍历的元素放进map中,因为map存放的就是我们访问过的元素。
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
std::unordered_map <int,int> map;
for(int i = 0; i < nums.size(); i++) {
// 遍历当前元素,并在map中寻找是否有匹配的key
auto iter = map.find(target - nums[i]);
if(iter != map.end()) {
return {iter->second, i};
}
// 如果没找到匹配对,就把访问过的元素和下标加入到map中
map.insert(pair<int, int>(nums[i], i));
}
return {};
}
};