数据结构与算法-递归(迷宫问题)

本文介绍了如何运用递归解决迷宫问题,包括状态表示、递归调用、基本判断以及回溯机制。同时,还提到了优化方案,如使用栈实现非递归版本的迷宫求解算法,以减少堆栈溢出风险。通过实例和算法分析,强调了在实际问题中选择合适方法的重要性。
摘要由CSDN通过智能技术生成

引言

        在数据结构与算法的世界中,迷宫问题作为经典的探索性问题,为我们提供了理解和应用递归思想的绝佳场景。本文将深入探讨如何运用递归来解决迷宫问题,并揭示其背后的逻辑和策略。

一、迷宫问题概述

        迷宫通常被建模为一个二维网格,其中每个格子代表一个可行走的位置,墙或障碍物则用特定值标识。目标是找到从起点到终点的最短路径(或任何通路)。递归作为一种强大的编程工具,在解决这类问题时表现出了独特的魅力。

二、递归求解迷宫问题的基本思路

  1. 定义状态表示: 在递归求解迷宫问题时,我们需要明确当前的状态,即当前所处的位置。同时,可以设定一个辅助数组来记录已经访问过的位置,避免重复搜索。

  2. 基本情况判断: 当前位置即是终点时,返回成功;当前位置是墙壁或者已访问过且无法到达终点时,返回失败。

  3. 递归步骤: 对于当前位置,尝试向四个方向(上、下、左、右)移动,并对每个可能的方向进行递归调用。如果某个方向能到达终点,则返回成功。

  4. 回溯机制: 如果尝试的所有方向都无法到达终点,则需要“回溯”至上一步决策,撤销对该位置的标记并尝试其他方向。 

三、代码展示

1.创建地图

//        创建一个地图数组 1 代表墙和挡板  四周都是墙 且 第四行第二列和第三列是挡板
        int[][] map = new int[8][7];
        map[3][1] = 1;
        map[3][2] = 1;
        for (int i = 0; i < map.length; i++) {
            for (int j = 0; j < map[i].length; j++) {
                if (i == 0 || i == map.length - 1 || j == 0 || j == map[i].length - 1) {
                    map[i][j] = 1;
                }
            }
        }

2.验证路径

//    使用递归回溯给小球找到出路
//    起点是map[1][1] 终点是map[6][5]
//    当map[i][j] = 0表示该点没走过,为1是墙不能走,为2表示通路,为3表示走过但是走不通
//    路线策略 下 -> 右 -> 上 -> 左 走不通就回溯

    /**
     * @param map 表示地图
     * @param i   表示球在第几行
     * @param j   表示球在第几列
     * @return TRUE 可以走   FALSE 不可走
     */
    public static boolean setWay(int[][] map, int i, int j) {
        if (map[6][5] == 2) {  //通路
            return true;
        } else {
            if (map[i][j] == 0) {
                map[i][j] = 2;   //假定走通
                if (setWay(map, i + 1, j)) {  //向下走
                    return true;
                } else if (setWay(map, i, j + 1)) {  //向右走
                    return true;
                } else if (setWay(map, i - 1, j)) {  //向上走
                    return true;
                } else if (setWay(map, i, j - 1)) {  //向左走
                    return true;
                } else {   //死路
                    map[i][j] = 3;
                    return false;
                }
            } else {  //map[i][j] != 0  map 可能是 1 | 2 | 3
                return false;
            }
        }
    }

3.打印地图 

    private static void printMap(int[][] map) {
        for (int i = 0; i < map.length; i++) {
            for (int j = 0; j < map[i].length; j++) {
                System.out.print(map[i][j] + "\t");
            }
            System.out.println();
        }
    }

4.求取最短路径 

    private static void bfsShortestPath(int[][] map, int startRow, int startCol, int endRow, int endCol) {
        Queue<int[]> queue = new LinkedList<>();
        boolean[][] visited = new boolean[map.length][map[0].length];
        int[][] pathMap = new int[map.length][map[0].length]; // 记录路径的二维数组

        // 初始化队列和访问状态
        queue.offer(new int[]{startRow, startCol});
        visited[startRow][startCol] = true;
        pathMap[startRow][startCol] = 1;

        while (!queue.isEmpty()) {
            int[] current = queue.poll();
            int row = current[0];
            int col = current[1];

            // 如果找到了终点,则结束搜索
            if (row == endRow && col == endCol) {
                return;
            }

            // 遍历当前节点的四个相邻方向
            for (int[] dir : directions) {
                int newRow = row + dir[0];
                int newCol = col + dir[1];

                if (isValid(newRow, newCol, map) && !visited[newRow][newCol]) {
                    visited[newRow][newCol] = true;
                    pathMap[newRow][newCol] = pathMap[row][col] + 1;
                    queue.offer(new int[]{newRow, newCol});
                }
            }
        }
    }

    private static final int[][] directions = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};

    private static boolean isValid(int row, int col, int[][] map) {
        return row >= 0 && row < map.length && col >= 0 && col < map[0].length && map[row][col] == 0;
    }

 四、结果展示

1.主函数调用 

//        使用递归回溯给小球找路
        setWay(map, 1, 1);
        System.out.println("路线为:s数字2标记的路线:");
        printMap(map);

        bfsShortestPath(map, 1, 1, 6, 5);
        System.out.println("最短路线为:");
        printMap(map);

2.运行结果 

五、优化:使用栈实现非递归解决方案

        尽管递归方法直观易懂,但在实际应用中,可能会因深度过大导致堆栈溢出的问题。此时,我们可以借助栈数据结构实现迭代版的迷宫求解算法,如通过宽度优先搜索(BFS)或深度优先搜索(DFS)配合队列或栈来避免堆栈深度过大的问题。

六、总结

        递归求解迷宫问题不仅展示了递归算法的强大之处,也让我们深刻理解了回溯这一重要概念。在实践中,我们应根据具体需求选择合适的算法和数据结构以提高效率。无论是递归还是非递归解决方案,都反映出计算机科学中解决问题的创新思维和系统化方法论。通过研究迷宫问题及其解决方案,程序员可以进一步提升自己的算法设计和分析能力。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值