P1057 [NOIP2008 普及组] 传球游戏

这篇博客介绍了一个关于传球游戏的数学问题,其中n个学生围成一个圈,球从特定学生开始传递,经过m次传递后返回原点。博主通过线性动态规划的方法,提出了转移状态方程,即f[i][j]=f[i-1][j-1]+f[i-1][j+1],并处理了边界条件,如j等于1或n时的特殊情况。最终,博主给出了C++代码实现,用于计算在给定条件下返回原点的传球方法数。
摘要由CSDN通过智能技术生成

传球游戏

题目描述

上体育课的时候,小蛮的老师经常带着同学们一起做游戏。这次,老师带着同学们一起做传球游戏。

游戏规则是这样的: n n n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师再次吹哨子时,传球停止,此时,拿着球没有传出去的那个同学就是败者,要给大家表演一个节目。

聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了 m m m次以后,又回到小蛮手里。两种传球方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有三个同学 1 1 1号、 2 2 2号、 3 3 3号,并假设小蛮为 1 1 1号,球传了 3 3 3次回到小蛮手里的方式有 1 1 1-> 2 2 2-> 3 3 3-> 1 1 1 1 1 1-> 3 3 3-> 2 2 2-> 1 1 1,共 2 2 2种。

输入格式

一行,有两个用空格隔开的整数 n , m ( 3 ≤ n ≤ 30 , 1 ≤ m ≤ 30 ) n,m(3 \le n \le 30,1 \le m \le 30) n,m(3n30,1m30)

输出格式

1 1 1个整数,表示符合题意的方法数。

样例 #1

样例输入 #1

3 3

样例输出 #1

2

提示

40%的数据满足: 3 ≤ n ≤ 30 , 1 ≤ m ≤ 20 3 \le n \le 30,1 \le m \le 20 3n30,1m20

100%的数据满足: 3 ≤ n ≤ 30 , 1 ≤ m ≤ 30 3 \le n \le 30,1 \le m \le 30 3n30,1m30

2008普及组第三题

解析:
这题仔细看是个线性dp问题,可以把问题分成一系列的子问题,就是每次传球可以往两个方向传一个是向右,一个是向左.

  • 我们的策略是: m次传球一定是要回到第一个人手上,所以m-1次球就一定在i+1或者i-1的人手上,也就是f[i][j]第i次传球到第j个人手上
  • 再往上推就是m-2次,球就一定在i+2或者i-2手上,所以转移状态方程是:
  • f[i][j] = f[i-1][j-1] + f[i-1][j+1],解释下,就是第i次传球在第j个人手上,那么i-1次传球就只能在j的左边或者右边就是,i-1或者i+1
  • 但是题目说是围成一个圈,所以就有特殊情况,当j == 1时(j-1)就得换成n,当j == n时 (j+1)就得换成1,初始条件就是第0次传球,还在自己手上,所以 f[0][1] = 1

下面附上我的代码:

#include<iostream>
using namespace std;
int dp[35][35];
int main()
{
    int n, m;
    cin >> n >> m;
    dp[0][1] = 1;  // 初始条件没有传球时,球一定在1号自己手上
    for (int i = 1; i <= m; i ++)
        for (int j = 1; j <= n; j ++) {
            if (j == 1)   // j == 1 (j-1)换成n
                dp[i][j] = dp[i-1][n] + dp[i-1][j+1];
            else if (j == n)  // j == n(j+1) 换成1
                dp[i][j] = dp[i-1][j-1] + dp[i-1][1];
            else 
                dp[i][j] = dp[i-1][j-1] + dp[i-1][j+1];
        }
    cout << dp[m][1];  // 输出第m次传球回到1号自己手里有多少种
    return 0;
}

防抄袭 )🤭

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值