题目描述
上体育课的时候,小蛮的老师经常带着同学们一起做游戏。这次,老师带着同学们一起做传球游戏。
游戏规则是这样的: n n n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师再次吹哨子时,传球停止,此时,拿着球没有传出去的那个同学就是败者,要给大家表演一个节目。
聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了 m m m次以后,又回到小蛮手里。两种传球方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有三个同学 1 1 1号、 2 2 2号、 3 3 3号,并假设小蛮为 1 1 1号,球传了 3 3 3次回到小蛮手里的方式有 1 1 1-> 2 2 2-> 3 3 3-> 1 1 1和 1 1 1-> 3 3 3-> 2 2 2-> 1 1 1,共 2 2 2种。
输入格式
一行,有两个用空格隔开的整数 n , m ( 3 ≤ n ≤ 30 , 1 ≤ m ≤ 30 ) n,m(3 \le n \le 30,1 \le m \le 30) n,m(3≤n≤30,1≤m≤30)。
输出格式
1 1 1个整数,表示符合题意的方法数。
样例 #1
样例输入 #1
3 3
样例输出 #1
2
提示
40%的数据满足: 3 ≤ n ≤ 30 , 1 ≤ m ≤ 20 3 \le n \le 30,1 \le m \le 20 3≤n≤30,1≤m≤20
100%的数据满足: 3 ≤ n ≤ 30 , 1 ≤ m ≤ 30 3 \le n \le 30,1 \le m \le 30 3≤n≤30,1≤m≤30
2008普及组第三题
解析:
这题仔细看是个线性dp问题,可以把问题分成一系列的子问题,就是每次传球可以往两个方向传一个是向右,一个是向左.
- 我们的策略是: m次传球一定是要回到第一个人手上,所以m-1次球就一定在i+1或者i-1的人手上,也就是f[i][j]第i次传球到第j个人手上
- 再往上推就是m-2次,球就一定在i+2或者i-2手上,所以转移状态方程是:
- f[i][j] = f[i-1][j-1] + f[i-1][j+1],解释下,就是第i次传球在第j个人手上,那么i-1次传球就只能在j的左边或者右边就是,i-1或者i+1
- 但是题目说是围成一个圈,所以就有特殊情况,当j == 1时(j-1)就得换成n,当j == n时 (j+1)就得换成1,初始条件就是第0次传球,还在自己手上,所以 f[0][1] = 1
下面附上我的代码:
#include<iostream>
using namespace std;
int dp[35][35];
int main()
{
int n, m;
cin >> n >> m;
dp[0][1] = 1; // 初始条件没有传球时,球一定在1号自己手上
for (int i = 1; i <= m; i ++)
for (int j = 1; j <= n; j ++) {
if (j == 1) // j == 1 (j-1)换成n
dp[i][j] = dp[i-1][n] + dp[i-1][j+1];
else if (j == n) // j == n(j+1) 换成1
dp[i][j] = dp[i-1][j-1] + dp[i-1][1];
else
dp[i][j] = dp[i-1][j-1] + dp[i-1][j+1];
}
cout << dp[m][1]; // 输出第m次传球回到1号自己手里有多少种
return 0;
}
(防抄袭 )🤭