第一章 网络科学入门之图论
文章目录
前言
网络科学是一个涉及到多个学科领域的交叉学科,它主要研究的是各种复杂网络的结构、演化、功能和行为等方面的问题。而图论则是网络科学中最基础、最重要的数学工具之一,它的研究对象是图和图的性质。
图论作为一门数学学科,最早起源于18世纪欧洲的柯尼斯堡七桥问题,它在数学、计算机科学、物理学、化学、生物学等众多领域中都有广泛的应用。在网络科学中,图论的应用更是无处不在,比如在社交网络分析、蛋白质相互作用网络分析、交通网络分析等方面都有着不可替代的作用。
本系列的第一章将详细介绍图论的基本概念,并探讨图论与网络科学的关系。通过学习本章内容,读者将能够更好地理解网络科学中的各种问题和方法,并为后续章节的学习打下坚实的基础。
一、网络和图
在大学的离散数学课程中,我们便有学习图的相关知识。网络和图是两个不同的概念,但它们之间存在一定的对应关系。具体来说,网络通常指的是由节点和连接构成的复杂系统,而图则是一种用于描述网络结构的数学模型。以下是网络与图之间常见的概念对应关系:
节点:网络中的节点通常对应图中的顶点或节点。
链接:网络中的链接通常对应图中的边或弧。
度数:节点的度数表示与该节点相连的边数,它在图中也有相应的概念。
路径:网络中的路径通常对应图中的路径,表示从一个节点到另一个节点的一系列边或弧。
子图:网络中的子图通常对应图中的子图,表示从原图中选取一些节点和它们之间的边或弧构成的图。
连通性:网络中的连通性通常对应图中的连通性,表示图中任意两个节点之间是否存在路径。
图的类型:网络中的图的类型通常对应图中的图的类型,如无向图、有向图、加权图等。
二、度、平均度和度分布
1.度
在网络中,一个节点的度指的是与该节点相连的边的数量。对于无向图中的节点 i i i,其度数记为 k i k_i ki,表示与节点 i i i相连的边的数目。对于有向图中的节点 i i i,其入度和出度分别记为 k i n , i k_{in,i} kin,i和 k o u t , i k_{out,i} kout,i,分别表示有多少条边指向节点 i i i和有多少条边从节点 i i i发出。
在无向网络中,总链接数 L 可以表示为每个节点的度数之和的一半,即 L = 1 2 ∑ i = 1 N k i L=\frac{1}{2}\sum\limits_{i=1}^N k_i L=21i=1∑Nki其中 N N N是网络中节点的总数。这个公式可以这样解释:每条边都连接了两个节点,所以每条边都会对两个节点的度数各自增加1,因此,度数之和等于总链接数的两倍。
而在有向网络中,有以下公式成立: L = ∑ i = 1 N k i n , i = ∑ i = 1 N k o u t , i L=\sum\limits_{i=1}^N k_{in,i}=\sum\limits_{i=1}^N k_{out,i} L=i=1∑Nkin