这道题使用了floyd判圈算法,所以先讲解floyd算法的原理和实现,最后在附加上第142题的代码。
floyd算法:
一.用途:
可以在有限状态机、迭代函数或者链表上判断是否存在环,求出该环的起点与长度的算法。
二.原理:
首先在statr处设置两个指针,其中一个是fast,另一个是slow,fast指针的前进速度是2个单位,slow指针的前进速度是1个单位。
注:接下来以链表为例!!
1.判断是否存在环:
@如果fast指针读取到一个空指针,证明到达了链表的尽头(链表尽头是空指针),那么该链表是没有环的。
@如果fast指针和slow指针相遇,由于fast指针的速度是slow指针的二倍,只可能在链表的环上某点相遇,证明该链表存在环。
注:找环路起点和求解环路长度都是在存在环的基础上开始的,找环路起点和求解环路长度并没有关系!!!
2.找到环路的起点:(斗胆把图贴了两遍,避免读的时候翻回去)
@相遇后,slow指针走过了 i = M + n * C + k 个单位,fast指针走过了 2i = M + p * C + k 个单位(n与p是走过的圈数,fast指针速度是slow指针的2倍),相减得到 i = (p - n) * C,也就是说slow指针走过的长度i是C的整数倍。此时令fast指针回到起点,速度降为1个单位(和slow指针速度相同),slow指针继续前进,当fast指针走过M个单位时,slow指针共走了 i + M 个单位,而 i 是C的整数倍,所以slow指针和fast指针恰好在环路的起点link处相遇,也就找到了环路的起点link。
3.求解环路的长度:
@相遇后,令slow指针停止前进,fast指针以一个单位的速度继续前进,直到slow指针和fast指针再次相遇,那么fast指针走过的长度就是环路的长度。
三.代码实现:
#include <iostream>
using namespace std;
struct ListNode{
int data;
ListNode *next;
ListNode(int x):data(x), next(nullptr){}
};
ListNode* detectCycle(ListNode* head){
ListNode *fast = head, *slow = head;
do{
if(!fast || !fast->next) return nullptr;
fast = fast->next->next;
slow = slow->next;
}while(fast != slow);
//求解环的长度
int i = 0;
do{
fast = fast->next;
i++;
}while(fast != slow);
//打印环的长度,由于函数的返回值类型不是int 所以不能return i;
cout<<"环的长度为:"<<i<<endl;
//寻找环的起点
fast = head;
while(slow != fast){
fast = fast->next;
slow = slow->next;
}
return fast;
}
四。leetcode 142.环形链表 II代码:(上面已经讲解的很详细了,不需要额外解释了吧)
class Solution {
public:
ListNode *detectCycle(ListNode *head) {
ListNode *fast = head, *slow = head;
do{
if(!fast || !fast->next) return nullptr;
fast = fast->next->next;
slow = slow->next;
}while(fast != slow);
fast = head;
while(fast != slow){
fast = fast->next;
slow = slow->next;
}
return fast;
}
};