Floyd算法详解——证明无后效性——寻找最小环

代码

Floyd算法代码非常简洁,它是一种基于动态规划的多源最短路径算法(即可以求出每个点对之间的最短路径)。
初步分析来看,代码就是个三层嵌套循环,然后就是k层循环在最外层。其实记住这些,就够使用了,但研究算法还是不求甚解比较好。

    private void floyd() {
        for (int k = 0; k < n; k++) {
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < n; j++) {
                    a[i][j] = Math.min(a[i][j], a[i][k] + a[k][j]);
                }
            }
        }

原理分析

假设节点序号是从1到n。
假设 f[0][i][j] f [ 0 ] [ i ] [ j ] 是一个n*n的矩阵,第i行第j列代表从i到j的权值,如果i到j有边,那么其值就为 ci,j c i , j (边ij的权值)。如果没有边,那么其值就为无穷大。

f[k][i][j] f [ k ] [ i ] [ j ] 代表(k的取值范围是从1到n),在考虑了从1到k的节点作为中间经过的节点时,从i到j的最短路径的长度。

比如, f[1][i][j] f [ 1 ] [ i ] [ j ] 就代表了,在考虑了1节点作为中间经过的节点时,从i到j的最短路径的长度。

分析可知, f[1][i][j] f [ 1 ] [ i ] [ j ] 的值无非就是两种情况,而现在需要分析的路径也无非两种情况, i=>ji=>1=>j i => j , i => 1 => j
【1】 f[0][i][j] f [ 0 ] [ i ] [ j ] i=>j i => j 这种路径的长度,小于, i=>1=>j i => 1 => j 这种路径的长度
【2】 f[0][i][1]+f[0][1][j] f [ 0 ] [ i ] [ 1 ] + f [ 0 ] [ 1 ] [ j ] i=>1=>j i => 1 => j 这种路径的长度,小于, i=>j i => j 这种路径的长度

形式化说明如下:
f[k][i][j] f [ k ] [ i ] [ j ] 可以从两种情况转移而来:
【1】从 f[k1][i][j] f [ k − 1 ] [ i ] [ j ] 转移而来,表示i到j的最短路径不经过k这个节点
【2】从 f[k1][i][k]+f[k1][k][j] f [ k − 1 ] [ i ] [ k ] + f [ k − 1 ] [ k ] [ j ] 转移而来,表示i到j的最短路径经过k这个节点

总结就是: f[k][i][j]=min(f[k1][i][j],f[k1][i][k]+f[k1][k][j]) f [ k ] [ i ] [ j ] = m i n ( f [ k − 1 ] [ i ] [ j ] , f [ k − 1 ] [ i ] [ k ] + f [ k − 1 ] [ k ] [ j ] )
从总结上来看,发现 f[k] f [ k ] 只可能与 f[k1] f [ k − 1 ] 有关。

动态规划

从动态规划的角度分析,题目需要合理的定义状态,划分阶段

我们定义 f[k][i][j] f [ k ] [ i ] [ j ] 为考虑从1到k这些节点后,所能得到的最短路径的长度。
f[k][i][j] f [ k ] [ i ] [ j ] 可以从 f[k1][i][j] f [ k − 1 ] [ i ] [ j ] 转移而来,表示 i i j的最短路径不经过 k k 这个节点。
f[k][i][j]也可以从 f[k1][i][k]+f[k1][k][j] f [ k − 1 ] [ i ] [ k ] + f [ k − 1 ] [ k ] [ j ] 转移而来,表示 i i j的最短路径经过 k k 这个节点。

考虑以上状态的定义,是否满足最优子结构无后效性原则。
最优子结构:在图中,显而易见,最短路径的子路径仍然是最短路径。比如一条从1到5的最短路径为1=>2=>3=>4=>5,那么1=>2=>3一定是1到3的最短路径,3=>4=>5一定是3到5的最短路径。形式化说明则是,从j到j的最短路径一定是由从i到k的最短路径再合上从k到j的最短路径组成的。

上面这个例子虽然方便理解,但如果要结合Floyd算法和上述例子分析的话,上述例子是把一个有4截的最短路径,分为有2截的最短路径加起来,那么Floyd算法的k层循环则是每次只加1截最短路径。

所谓无后效性原则,指的是这样一种性质:某阶段的状态一旦确定,则此后过程的演变不再受此前各状态及决策的影响。也就是说,“未来与过去无关”,当前的状态是此前历史的一个完整总结,此前的历史只能通过当前的状态去影响过程未来的演变。

无后效性:从上述定义可以看出f[k]的状态完全是从 f[k1] f [ k − 1 ] 转移过来,所以我们只要把k放到最外层循环中,就可以保证无后效性。

滚动数组(证明无后效性)

可以发现,整个程序一直在对同一个二维数组进行操作,而不是因为最外层循环有k层,就建立k个二维数组。这是因为这个二维数组可以在更新的过程一直重复利用,而且按照程序流程走,不会出现错误的情况。
假设初始二维数组 f[0] f [ 0 ] 为:
这里写图片描述
最外层循环k从1开始, f[1][i][j] f [ 1 ] [ i ] [ j ] 只和 f[0] f [ 0 ] 有关。
第一种情况 f[1][i][j] f [ 1 ] [ i ] [ j ] = f[0][i][j] f [ 0 ] [ i ] [ j ]
第二种情况 f[1][i][j] f [ 1 ] [ i ] [ j ] = f[0][i][1]+f[0][1][j] f [ 0 ] [ i ] [ 1 ] + f [ 0 ] [ 1 ] [ j ] 这两种情况

参与计算的值:指等号右边的值

下面分析在k=1时的最外层循环中:
第一种情况中,参与计算的值就是它本身(因为使用的是同一个二维数组,而 ij i j 又是一样的)(符合无后效性: f[1] f [ 1 ] 的状态完全是从 f[0] f [ 0 ] 转移过来)
第二种情况中,参与计算的值由两部分组成 f[0][i][1]+f[0][1][j] f [ 0 ] [ i ] [ 1 ] + f [ 0 ] [ 1 ] [ j ]
f[0][i][1] f [ 0 ] [ i ] [ 1 ] 是第1列元素(i从1变化到4,所以是第1列)且 f[0][1][j] f [ 0 ] [ 1 ] [ j ] 是第1行元素(j从1变化到4,所以是第1行)。
蓝线代表对角线元素。
这里写图片描述
既然k=1确定下来了,再确定i和j,i和j无非就是下面的情况:
(1,1)(1,2)(1,3)(1,4)(2,1)(2,2)...(4,4) ( 1 , 1 ) ( 1 , 2 ) ( 1 , 3 ) ( 1 , 4 ) ( 2 , 1 ) ( 2 , 2 ) . . . ( 4 , 4 )
括号内的取值代表 (i,j) ( i , j ) 。且循环是按照上面的情况,依次顺序执行

那么k=1层循环中的某个时刻,这个二维数组的元素有的是属于 f[1] f [ 1 ] 的,有的是属于 f[0] f [ 0 ] 。比如,有可能是 (1,1)(1,2)(1,3)(1,4) ( 1 , 1 ) ( 1 , 2 ) ( 1 , 3 ) ( 1 , 4 ) 元素是属于 f[1] f [ 1 ] 的, (2,1)(2,2)...(4,4) ( 2 , 1 ) ( 2 , 2 ) . . . ( 4 , 4 ) 是属于 f[0] f [ 0 ] 。因为循环还没有执行完毕嘛。

现在需要做的证明是,因为有 f[1] f [ 1 ] 的状态完全是从 f[0] f [ 0 ] 转移过来,所以当你计算任意的 f[1][i][j] f [ 1 ] [ i ] [ j ] 的过程中,参与计算的值应该是都属于 f[0] f [ 0 ] 的,而不是属于 f[1] f [ 1 ] 的(即证明无后效性)

为了证明,现作证明的准备,分析上面提到的第二种情况中参与计算的值的组成的两部分 f[0][i][1]+f[0][1][j] f [ 0 ] [ i ] [ 1 ] + f [ 0 ] [ 1 ] [ j ] ,假设 (i,j) ( i , j ) 现在确定下来为 (2,3) ( 2 , 3 ) (且这里假设符第二种情况),那么有 f[1][2][3]=f[0][2][1]+f[0][1][3] f [ 1 ] [ 2 ] [ 3 ] = f [ 0 ] [ 2 ] [ 1 ] + f [ 0 ] [ 1 ] [ 3 ]

但由于程序是顺序执行的, (2,1) ( 2 , 1 ) (1,3) ( 1 , 3 ) 肯定是在 (2,3) ( 2 , 3 ) 之前就执行了,意思就是现在我们已经找不到 f[0][2][1] f [ 0 ] [ 2 ] [ 1 ] f[0][1][3] f [ 0 ] [ 1 ] [ 3 ] 的值,因为已经被 f[1][2][1] f [ 1 ] [ 2 ] [ 1 ] f[1][1][3] f [ 1 ] [ 1 ] [ 3 ] 覆盖掉了啊,既然如此,再按照 f[1][2][3]=f[0][2][1]+f[0][1][3] f [ 1 ] [ 2 ] [ 3 ] = f [ 0 ] [ 2 ] [ 1 ] + f [ 0 ] [ 1 ] [ 3 ] 计算,实际是计算的是 f[1][2][3]=f[1][2][1]+f[1][1][3] f [ 1 ] [ 2 ] [ 3 ] = f [ 1 ] [ 2 ] [ 1 ] + f [ 1 ] [ 1 ] [ 3 ] ,那岂不是违背了我们要做的证明(即无后效性)。

但其实并没有违背,因为 f[0][2][1] f [ 0 ] [ 2 ] [ 1 ] f[1][2][1] f [ 1 ] [ 2 ] [ 1 ] 是一样的,同样, f[0][1][3] f [ 0 ] [ 1 ] [ 3 ] f[1][1][3] f [ 1 ] [ 1 ] [ 3 ] 也是一样的。因为 f[1][2][1]=f[0][2][1]+f[0][1][1] f [ 1 ] [ 2 ] [ 1 ] = f [ 0 ] [ 2 ] [ 1 ] + f [ 0 ] [ 1 ] [ 1 ] ,但 f[0][1][1]=0 f [ 0 ] [ 1 ] [ 1 ] = 0 (图中对角线的元素都为0),所以就有,实际计算的 f[1][2][3]=f[1][2][1]+f[1][1][3] f [ 1 ] [ 2 ] [ 3 ] = f [ 1 ] [ 2 ] [ 1 ] + f [ 1 ] [ 1 ] [ 3 ] 并不违背无后效性。

进一步分析推广,得出,在红线上的元素对于 f[1][i][j]=f[0][i][j] f [ 1 ] [ i ] [ j ] = f [ 0 ] [ i ] [ j ] 永远成立

证明准备完毕,继续证明。情况无非两种,第一种情况和第二种情况
第一种情况 f[1][i][j]=f[0][i][j] f [ 1 ] [ i ] [ j ] = f [ 0 ] [ i ] [ j ] ,等号左边的元素的都是k=1,等号右边的元素都是k=0,符合证明。
第二种情况 f[1][i][j]=f[0][i][1]+f[0][1][j] f [ 1 ] [ i ] [ j ] = f [ 0 ] [ i ] [ 1 ] + f [ 0 ] [ 1 ] [ j ] .参与计算的值的左边元素和右边元素,都是属于红线上的元素,根据上述证明的准备,得知参与计算的值的元素不管有没有被覆盖掉(从 f[0] f [ 0 ] 变到 f[1] f [ 1 ] ),其值与 f[0] f [ 0 ] 相等,即不变。即等号右边的元素都是k=0,符合证明。

所以,只用一个二维数组,即滚动数组,是可以的。因为就算反复只用一个数组,计算值的过程中,也一直保持了正确性,即保持了无后效性。
同理分析k=2,k=3,k=4时的最外层循环,也同样能证明在程序运行的过程中,保持了无后效性。

一个例子

假设节点现在从1到5。然后现在已知,1到5的最短路径为1=>4=>3=>2=>5.
现在把重点放在1和5,让i=1,j=5.
最外层循环k从k=1循环到k=5,现在我们只关注每层k循环里面对从1到5的最短路径作了什么贡献:
【1】当k=1时,即考虑中间经过为[1],没有贡献
【2】当k=2时,即考虑中间经过为[1,2],虽然没有直接得出1到5的最短路径,但记录下来了从2到5的最短路径
【3】当k=3时,即考虑中间经过为[1,2,3],虽然没有直接得出1到5的最短路径,但记录下来了从3到5的最短路径
【4】当k=4时,即考虑中间经过为[1,2,3,4],虽然没有直接得出1到5的最短路径,但记录下来了从4到5的最短路径
【5】最终找到最短路径
这个过程就好比是一个双向搜索的过程,从两端向中间搜索。这个也跟最优子结构有关,最短路径的子路径必定也为最短路径。

负权边 负权环

负权边:权重为负数的边。
负权环:源点到源点的一个环,环上权重和为负数。

Floyd算法只能在不存在负权环的情况下使用。如果有负权环,那么最短路径将无意义,因为我们可以不断走负权环,这样最短路径值便成为了负无穷。但可以处理带负权边但是无负权环的情况。

代码实现

这里写图片描述

无负权环

length =5
value = [[float("inf") for i in range(length)] for j in range(length)]
for i in range(length):
    value[i][i] = 0

path = [[-1 for i in range(length)] for j in range(length)]
#print(value)
value[0][1] = 10
value[1][0] = 10
value[0][3] = 30
value[3][0] = 30
value[0][4] = 100
value[4][0] = 100
value[1][2] = 50
value[2][1] = 50
value[2][3] = 20
value[3][2] = 20
value[2][4] = 10
value[4][2] = 10
value[3][4] = 60
value[4][3] = 60
for k in range(length):
    for i in range(length):
        for j in range(length):
            temp = value[i][k] + value[k][j]
            if(temp < value[i][j]):
                value[i][j] = temp
                path[i][j] = k
print(value)
print(path)
def get(i,j):
    print('从'+str(i)+'到'+str(j)+'的最短路径长度为'+str(value[i][j]))
    def recursion(i,j):
        if(path[i][j]==-1):#终点
            return ' ' + str(i) + '=>' + str(j) + ' '
        else:
            k = path[i][j]
            return recursion(i,k)+recursion(k,j)
    print(recursion(i,j))
get(1,4)

这里写图片描述

有负权环

原图为无向图,现改一个边,从2到4的边改为-70,从4到2的边还是不变,这样原图就变成了一个有向图。
所以,2=>4=>2已经构成了一个负权环,其和为-60.
注意3=>2=>4=>2=>3是负权环,其和为-20.
这里写图片描述
代码改成value[2][4] = -70,改这一行就行。运行结果为:
这里写图片描述

报错原因:因为path[1,4]的值为4,所以执行递归函数时一直会recursion(1,4),一直到超出递归次数限制。此时为什么程序输出1=>4的最短路径为-80,是因为1=>4的最短路径为1=>3=>2=>4=>2=>4=30+20-70+10-70=-80。但此时path二维数组已经失去了它的作用,不能用来找到上一个节点,因为负权环的存在。
通过value二维数组的值,可以判断出哪些点构成了负权环,对角线元素本来应该为0,但由于有了负权环,就有value[2][2],value[3][3],value[4][4]不为0,所以就是2,3,4这三个节点构成了负权环的节点。

通过判断对角线元素,可以得出,负权环的构成节点。

有负权边但未形成负权环

代码改成value[0][1] = -10get(0,4)。此时没有形成负权环。运行结果为:
这里写图片描述
只要没有形成负权环,那么程序就不会出错。

寻找最小环

环即一条路径的起点和终点是同一个点。
之前的代码,令value的对角线元素的初值为0,现如果将所有节点的初值都设为无穷大,那么在get(i,i)(起点终点为同一个点)时,就能获得从i到i的最小环,因为如果没有环,那么从i到i的路径长肯定还是为float("inf"),但如果有环,则肯定value[i][i]的值肯定会被替换,而且在k的循环中,更小的环会替换掉旧的环,所以,通过这样,可以获得最小环。
我们甚至可以通过,在每k层循环中,检测对角线元素,一旦发现不为float("inf"),便打印出当前形成的环。这样就能得到所有的环了。

length =5
value = [[float("inf") for i in range(length)] for j in range(length)]
#这里不需要令对角线元素为0
path = [[-1 for i in range(length)] for j in range(length)]
value[0][1] = 10
value[1][0] = 10
value[0][3] = 30
value[3][0] = 30
value[0][4] = 100
value[4][0] = 100
value[1][2] = 50
value[2][1] = 50
value[2][3] = 20
value[3][2] = 20
value[2][4] = 10
value[4][2] = 10
value[3][4] = 60
value[4][3] = 60
for k in range(length):
    for i in range(length):
        for j in range(length):
            temp = value[i][k] + value[k][j]
            if(temp < value[i][j]):
                value[i][j] = temp
                path[i][j] = k
print(value)
print(path)
def get(i,j):
    print('从'+str(i)+'到'+str(j)+'的最短路径长度为'+str(value[i][j]))
    def recursion(i,j):
        if(path[i][j]==-1):#终点
            return ' ' + str(i) + '=>' + str(j) + ' '
        else:
            k = path[i][j]
            return recursion(i,k)+recursion(k,j)
    print(recursion(i,j))
get(0,0)

这里写图片描述
我这个例子不够好,导致能找到的最小环都是只有两个节点的,读者可以自行设计例子,同样能够找出最小环。

path二维数组

这个二维数组的功能是用来记录最短路径中间经过的节点。它有两种赋初值方式:
1.path = [[-1 for i in range(length)] for j in range(length)]
如果是这样的赋初值,那么recursion函数的终点应为if(path[i][j]==-1)
2.path = [[i for i in range(length)] for j in range(length)]
如果是这样的赋初值,那么recursion函数的终点应为if(path[i][j]==j)
即为:
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值