The Lower Bound of Comparison Sort Algorithm

1. There are n!  types of sequences for n different elements

2. Randomly choose 2 elements a and b, either a is larger than b or b is larger than a.

That means there are \frac{n!}{2} possibilities left. Then \frac{n!}{4}......

3. Suppose that it needs x times to decline to 1.

Calculate equation:

                                                                  2^{^{x}}  =  n!

Get x:

                                                                 x = \log_2{n!}   

Because n! = n*(n-1)...2*1

                                                                   n! < n^n

Finally, we get the time complexity:

                                                 x < \log_2{n^n} = n\log_2{n} = O(nlogn)

Therefore, the minimum time complexity of all the comparison-sort algorithms is  O(nlogn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MedivhMai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值