最速降线问题——欧拉-拉格朗日方程的推导

 由机械能守恒:

mgy=\frac{1}{2}mv^2

得 v: 

v=\sqrt{2gy}

由勾股定理得 :

ds = \sqrt{dx^{2}+dy^{2}} = \sqrt{1+\frac{dy^2}{dx^2}}dx

对弧长积分得:

T = \int_{a}^{b}\frac{ds}{v} = \int_{x_{a}}^{x_{b}} \frac{ \sqrt{1+\frac{dy^2}{dx^2}}}{\sqrt{2gy}}dx= \int_{x_{a}}^{x_{b}}\sqrt{\frac{1+(y')^2}{2gy}}dx

函数y是任意一条两端固定的曲线函数,将T表示成函数的函数:

T(y)=\int_{x_{a}}^{x_{b}}f(y,y' ,x)dx

假设y是一个极大值, 当y发生微小的变化时, y的变化率趋近于0,这种微小的变化记作\delta{T}.

\delta{T} = T(y + \delta{y}) - T(y) = \int_{x_{a}}^{x_{b}}[f(x,y + \delta y,y' + \delta y' ) - f(x, y, y')]dx

根据多元积分链式法则得:

f(x,y + \delta y,y' + \delta y' ) = f(x,y,y') + \frac{\partial f}{\partial y}\delta y + \frac{\partial f}{\partial y'}\delta y'

带入上式得:

 \delta T = \int_{x_{a}}^{x_{b}}(\frac{\partial f}{\partial y}\delta y + \frac{\partial f}{\partial y'}\delta y')dx

如果将 \delta y\delta y' 理解为与原函数的差函数, 那么变化量和dx无关.

由于两端固定, 从数学上可证明微分、变分的交换性质:

 d(\delta y) = \delta(dy)

进而得: 

\delta y' = \frac{d}{dx} \delta y

带入上式得:

\delta T = \int_{x_{a}}^{x_{b}}(\frac{\partial f}{\partial y}\delta y + \frac{\partial f}{\partial y'}(\delta y)')dx

积分第二项分部积分得:

\int_{x_{b}}^{x_{a}} \frac{\partial f}{\partial y'}(\delta y)'dx = \frac{\partial f}{\partial y'}\delta y \bigg|_{x_{a}}^{x_{b}} - \int_{x_{b}}^{x_{a}} ( \frac{d}{dx} \frac{\partial f}{\partial y'}\delta y) dx

 因为两端点的变分恒为0, 可得:

\int_{x_{b}}^{x_{a}} \frac{\partial f}{\partial y'}(\delta y)'dx = - \int_{x_{b}}^{x_{a}} ( \frac{d}{dx} \frac{\partial f}{\partial y'}\delta y) dx

 带入原方程得:

\delta T = \int_{x_{a}}^{x_{b}}(\frac{\partial f}{\partial y}\delta y - \frac{d}{dx} \frac{\partial f}{\partial y'}\delta y)dx

若要T取得极值, \delta T必须满足等于0, 即:

 \delta T = \int_{x_{a}}^{x_{b}}(\frac{\partial f}{\partial y} - \frac{d}{dx} \frac{\partial f}{\partial y'})\delta y dx = 0

 因\delta y任意选取, 要满足方程恒为0, 必须满足:

\frac{\partial f}{\partial y} - \frac{d}{dx} \frac{\partial f}{\partial y'}= 0

 此式即为欧拉-拉格朗日方程。

 根据此方程, 可知最速降线为摆线:

\begin{cases} x &= \frac{C}{2}(\theta - \sin{\theta}) \\ y &= \frac{C}{2}(1 - \cos{\theta}) \end{cases}

  • 7
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MedivhMai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值