自然语言处理46练习填空

Doc2Vec包括两种模型:分布式__ 记忆_模型和分布式__词袋;BOW_模型。 

jieba分词支持精确模式、___模式、_搜索引擎__模式三种分词模式。

TF-IDF算法由_词频__、__逆文档频率_两部分构成。

常见的基于统计分词的模型包括n元语法模型、隐马尔科夫;HMM模型、条件随机场;CRF模型等。

常见的语料预处理方法包括:去除数据中非文本部分、中文分词、__词性标注_、__去停用词_。

常用的无监督关键词提取算法包括_TF-IDF;词频-逆文档频率

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值