2024创新项目实训之学校云平台部署

我们已经在恒源云平台完成了部署和微调,但是学校的资源发下来了不用觉得浪费,于是想再学校的云平台再部署一遍。

控制台中使用命令查看cuda

nvidia-smi

使用的是cuda12

查看python版本

python 2.7.17

使用wget下载get-pip.py安装脚本

   wget https://bootstrap.pypa.io/pip/2.7/get-pip.py

用户级别进行安装(没有root权限)

   python get-pip.py --user

安装完成后,pip工具位于用户的local bin目录中。为了能够直接在命令行中调用pip,你需要将该目录添加到你的PATH环境变量中:

   echo 'export PATH=$PATH:~/.local/bin' >> ~/.bashrc

然后,读取更改:

   source ~/.bashrc

现在,应该可以使用pip来安装其他的Python包了,而且所有这些操作均不需要root权限。

但是在安装依赖的时候(见本专栏第二篇博客)报错,怀疑是python版本太低,使用conda升级

下载Miniconda安装脚本

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

 以及运行安装脚本

   bash Miniconda3-latest-Linux-x86_64.sh

会有一大串文字,一直回车就好,最后press yes。

输入no,完成conda下载。

使用命令

  export PATH="~/miniconda3/bin:$PATH"

 以及

conda init

会出现提示让你关闭shell。

重新打开shell就会出现(base),说明conda正在运行

 myenv改成你的环境名。

   conda create -n myenv python=3.8

 激活虚拟环境-运行玩会看到前面的括号内容变化。

   conda activate myenv

我的环境名为QUIZ,能看到现在的python已经是3.8.19

下载依赖(本专栏第二篇博客)(不太清楚这些依赖是不是都需要)

 

我这里是现在本地下载的文件,再上传到服务器,可以直接在服务器下载。

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer


import os
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm2-chat-1.8b', cache_dir='E:/internlm20', revision='master')


 未完待续

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值