我们已经在恒源云平台完成了部署和微调,但是学校的资源发下来了不用觉得浪费,于是想再学校的云平台再部署一遍。
控制台中使用命令查看cuda
nvidia-smi
使用的是cuda12
查看python版本
python 2.7.17
使用wget下载get-pip.py
安装脚本
wget https://bootstrap.pypa.io/pip/2.7/get-pip.py
用户级别进行安装(没有root权限)
python get-pip.py --user
安装完成后,pip工具位于用户的local bin目录中。为了能够直接在命令行中调用pip,你需要将该目录添加到你的PATH环境变量中:
echo 'export PATH=$PATH:~/.local/bin' >> ~/.bashrc
然后,读取更改:
source ~/.bashrc
现在,应该可以使用pip
来安装其他的Python包了,而且所有这些操作均不需要root权限。
但是在安装依赖的时候(见本专栏第二篇博客)报错,怀疑是python版本太低,使用conda升级
下载Miniconda安装脚本
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
以及运行安装脚本
bash Miniconda3-latest-Linux-x86_64.sh
会有一大串文字,一直回车就好,最后press yes。
输入no,完成conda下载。
使用命令
export PATH="~/miniconda3/bin:$PATH"
以及
conda init
会出现提示让你关闭shell。
重新打开shell就会出现(base),说明conda正在运行
myenv改成你的环境名。
conda create -n myenv python=3.8
激活虚拟环境-运行玩会看到前面的括号内容变化。
conda activate myenv
我的环境名为QUIZ,能看到现在的python已经是3.8.19
下载依赖(本专栏第二篇博客)(不太清楚这些依赖是不是都需要)
我这里是现在本地下载的文件,再上传到服务器,可以直接在服务器下载。
import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm2-chat-1.8b', cache_dir='E:/internlm20', revision='master')
未完待续