VLLM框架部署Qwen大模型,应该选择哪个qwen3系列的大模型和什么硬件配置?

本文基于下面的文章进行在探索,请最好先阅读下面文章。

超详细VLLM框架部署qwen3-4B加混合推理探索!!!-CSDN博客

一、模型选择和下载

通义千问3-8B-FP8 · 模型库

modelscope download --model Qwen/Qwen3-8B --local_dir /root/lanyun-tmp/modle/Qwen3-8B

modelscope download --model Qwen/Qwen3-4B --local_dir /root/lanyun-tmp/modle/Qwen3-4B

modelscope download --model Qwen/Qwen3-8B-FP8 --local_dir /root/lanyun-tmp/modle/Qwen3-8B-FP8

我的云服务器

二、模型的说明

 2.1 这三个模型有什么区别?

这里就需要知道大模型是什么?大模型本质上是一堆浮点数数字组成的矩阵,可以在模型的配置中看到。比如Qwen3-8B的8B是指,这个矩阵的浮点数字有80亿个,而每个参数(浮点数字)又是bfloat16的。可以简单理解成,模型的能力 = 模型参数量 * 模型的精度,但是模型的精度的影响较小,比如参数圆周率,精度是16位小数还是8位小数,对于我们计算圆的面积来说,误差是差不多的。但是16位的参数圆周率,我们计算的难度就会更大(显存消耗大),但是精度也会更精确。

所以Qwen3-8B等价于Qwen3-8B-FP16,Qwen3-4B等价于Qwen3-4B-FP16,我们把模型的每个参数的精度都从16位变成8位的过程就叫模型量化,我们一方面可以用模型微调框架LLama-factory进行模型量化,另一方面也可以直接在魔塔社区下载别人已经量化压缩好的模型Qwen3-8B-FP8

三、VLLM框架推理三个模型的显存消耗情况

显存怎么计算看一看前面的博客如何计算VLLM本地部署Qwen3-4B的GPU最小配置应该是多少?多人并发访问本地大模型的GPU配置应该怎么分配?-CSDN博客

情况一:Qwen3-8B-FP8:8.8GB+2.8GB = 11.6GB显存

vllm serve /root/lanyun-tmp/modle/Qwen3-8B-FP8 --max-model-len 10000

情况二: Qwen3-8B:15.2GB+1.3GB = 16.5GB显存

vllm serve /root/lanyun-tmp/modle/Qwen3-8B --max-model-len 10000

情况二: Qwen3-4B:7.55GB+1.3GB = 8.85GB显存

vllm serve /root/lanyun-tmp/modle/Qwen3-4B --max-model-len 10000

基于上述显存消耗情况,我们可以手动分配显存给到VLLM服务,比如我要部署推理 Qwen3-8B-FP8,我已经知道了模型推理的显存消耗是11.6GB,那我给12GB就够用了,我们服务器是24GB的,所以分配0.55的GPU(13.2GB)就可以。

vllm serve /root/lanyun-tmp/modle/Qwen3-8B-FP8 --max-model-len 10000 --gpu-memory-utilization 0.55

四、小结

基于企业的预算,还有模型的能力。

1.我们可以用16GB显存的显卡来部署推理,Qwen3-8B-FP8和Qwen3-4B模型,如果后续涉及到模型的微调训练,这个16GB就不够用,但是可以单独组几天的显卡来专门微调大模型,如果涉及到多人并发的话导致推理响应太慢,可以添加显卡的方法或者像VLLM框架一样做好访问列队的设计。这个方案性价比最高。

2.如果企业追求回答效果好的话选择Qwen3-8B-FP8好一点,但是后面的模型微调就比Qwen3-4B模型更难微调。

3.后续要考虑到词嵌入模型也要消耗GPU资源的话,最好还是部署一个24GB的显卡(控制利用率在0.9)差不多21.6GB,然后词嵌入的模型还有5GB用。

### vLLM 部署高并发大规模机器学习模型的最佳实践 vLLM 是一种高效的推理框架,专为大语言模型设计,能够显著提高实时场景下的吞吐量内存使用效率[^2]。以下是关于如何利用 vLLM 部署高并发的大规模机器学习模型的一些最佳实践: #### 1. **硬件优化** 为了支持高并发请求,选择合适的硬件配置至关重要。建议采用高性能 GPU 或者多 GPU 设置来加速计算过程。NVIDIA A100 H100 这样的高端显卡因其出色的并行处理能力而成为首选方案之一。 #### 2. **批量处理 (Batching)** 启用批量化可以有效减少每次预测所需的时间开销。通过将多个用户的输入组合成一个批次来进行统一运算,从而最大化设备利用率。vLLM 提供了内置的支持机制用于动态调整 batch size,在保证延迟满足 SLA 的前提下尽可能增大每轮迭代中的样本数量。 ```python from vllm import LLM, SamplingParams # 初始化模型实例 model = LLM(model="DeepSeek-R1-Distill-Qwen-1.5B") sampling_params = SamplingParams(temperature=0.8) prompts = ["你好", "世界"] outputs = model.generate(prompts=prompts, sampling_params=sampling_params) for output in outputs: print(output.text) ``` #### 3. **缓存策略** 对于重复查询或者相似度较高的请求序列,实施有效的缓存管理能极大降低实际调用量。vLLM 支持 KV-Cache 技术,允许存储先前已计算过的中间状态以便快速检索重用,进而加快响应速度并节省资源消耗。 #### 4. **负载均衡** 当单机难以承载全部流量时,则需考虑分布式架构的设计。借助 Kubernetes 等容器编排工具配合 Ingress 控制器实现自动化的任务分发与节点扩展功能,确保即使面对突发高峰也能维持稳定的服务质量水平。 #### 5. **监控与日志记录** 建立完善的性能指标跟踪体系以及异常捕捉流程非常重要。定期分析各项统计数据可以帮助识别瓶颈所在,并据此作出相应改进措施;同时保留详尽的日志文档也有利于后续排查问题根源之用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AIGC_北苏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值