之前有关FlashAttention V3的文章感觉有些难度,不符合大众化阅读,加上五一假期刚结束,为了帮助大家找到学习状态,所以决定这次写一篇极其友好的文章,保证看起来丝滑,如题。
上周Qwen3刚发布时,转载了一篇ktransformers的文章,ktransformers比较适合经济型部署,设备门槛略低一点,具体可以看一下ktransformers的介绍。
本文基于vllm框架最新版本0.8.5.post1实际部署Qwen3-235B-A22B模型,模型配置可见huggingface(https://huggingface.co/Qwen/Qwen3-235B-A22B或https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen3_moe/configuration_qwen3_moe.py)或Qwen官方的介绍:
-
Type: Causal Language Models
-
Training Stage: Pretraining & Post-training
-
Number of Parameters: 235B in total and 22B activated
-
Number of Paramaters (Non-Embedding): 234B
-
Number of Layers: 94
-
Number of Attention Heads (GQA): 64 for Q and 4 for KV
-
Number of Experts: 128
-
Number of Activated Experts: 8
-
Context Length: 32,768 natively and 131,072 tokens with YaRN.
环境setup
有很多种方式:1.源码编译安装 2.官方wheel文件的安装 3.使用官方release的docker
一般情况下,如果不是开发者,只是使用者,那么采取第3种方式即可,如果是开发者,那么源码编译安装是必需的,本文采取第3种方式
docker镜像选择和启动
-
docker镜像选择:vllm一般会把各个release版本的稳定docker镜像上传到dockerhub,在dockerhub搜索vllm即可查到,本文采取的docker镜像为``vllm/vllm-openai:0.8.5.post1``
-
docker容器启动:dockerhub里的vllm镜像最后一个命令为ENTRYPOINT,意味着docker启动的同时会运行的命令,所以这个vllm镜像启动的同时会启动openai server,因为我们部署的是Qwen3-235B-A22B,所以我们需要在命令行指定该model,否则默认部署的是opt-125M。此外指定tp为8,使用8卡来部署。(4卡也可,只要装得下参数且能有余量保存足够的kv cache就行)
tips:如果不想docker启动的同时运行某个命令,可以在命令行添加--entrypoint /bin/bash,这样的话,启动docker即直接进入命令行,不会自动启动server部署Qwen3模型,如下图
启动server&log解析
本文采取了docker启动的同时运行openai server serving Qwen3模型,即tips上面的命令,输出log如下
获取到的有用信息:
-
模型支持generate、embed、reward、classify、score,默认是generate,即文本生成式
-
chunked prefill默认打开,batched token数量是8192
-
模型的确是Qwen/Qwen3-235B-A22B
-
tp size为8
-
cuda graph capture的batch size大小有几十个,最大的batch size为512
获取到的有用信息:
-
因为是8卡部署,所以框起来的``automatically......cuda```显示了8次,在每张卡上面都要初始化都要check一次nccl
获取到的有用信息:
-
world size=8,即总共是8张卡,这8张卡全都用来做tp
-
flashinfer库用来计算top-p和top-k
-
而后开始load Qwen2-235B-A22B
获取到的有用信息:
-
首次部署该模型时,会去huggingface下载,而后缓存到huggingface的默认缓存目录(/root/.cache/huggingface),之后部署时,就不用下载而是直接load
获取到的有用信息:
-
模型加载完成后,每张卡花费了54.9GB,这里面不光是weight所占空间,还有kv cache等预留空间
-
为custom allreduce算子注册在cuda graph上的地址,便于capture
-
开始capture cuda graph
获取到的有用信息:
-
Qwen3在http://0.0.0.0:8000这个地址serving
-
有如上的很多http GET和POST方法可用
-
Qwen3部署服务的进程号是2126887
此时我们的GPU显存占用情况如下,聪明的读者或许已经猜出型号,但是我还是要为了zzzq打个码
由此,我们的Qwen3-235B-A22B模型就serving起来了,接下来我们只需在客户端发送请求给它处理,然后返回给我们就OK了
客户端请求
默认情况下,我们没有采用thinking模式,发送请求的命令如下,可用看到没有任何thinking过程
在给启动docker的命令中加上--enable-reasoning --reasoning-parser deepseek_r1后,即开启thinking模式。
此时客户端请求命令为以下,可以看到reasoning_content为思考过程,content为最终答复
此时服务端的log为以下,可以看到平均的generation throughput为54.3tokens/s,注意如果要得到框架的极限性能,需要使用项目中的benchmark脚本,下期或下下期文章根据反响再来考虑示范
我们再尝试一个http GET方法,对v1/models发出GET请求,响应如下,可以看到打印出了model信息
总结
最后,总结一下,我们本文示范了使用vllm部署使用Qwen3-235B-A22B的基本过程,并且解析了log,展示了整个过程做了哪些事情,成功把模型部署在了某个地址,最后朝这个地址发出请求即可得到响应。后面将根据读者反响考虑再展示一下SGLang如何来部署模型,并且探索vllm和SGLang的服务性能。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓