通义Qwen实战(2): vllm框架部署实战

<think>好的,用户想了解如何进行vLLM离线Docker部署。我需要先理解vLLM是什么。vLLM是一个高效的大模型推理和服务库,适用于生产环境。离线部署通常涉及在没有互联网连接的环境中安装和运行Docker容器。 首先,用户需要准备Docker环境。根据引用[2]中的信息,离线安装Docker可以通过脚本完成,需要确保所有服务器都安装了Docker并配置了镜像仓库。接下来是构建或获取vLLM的Docker镜像。如果在离线环境中,用户可能需要先在有网络的环境下构建镜像,然后导出并传输到离线服务器。例如,使用docker save和docker load命令,如引用[1]中的docker push和镜像仓库的配置。 然后,用户需要处理依赖项。vLLM依赖如PyTorch等库,离线情况下需要预先下载这些依赖的whl文件,并在Dockerfile中复制进去。可以参考引用[3]中提到的离线部署方法,可能涉及到下载特定版本的组件并手动安装。 接下来是编写Dockerfile。需要基于合适的基础镜像,比如CUDA镜像,然后复制vLLM的代码和依赖,安装必要的包。Dockerfile中要确保所有安装步骤都能离线完成,避免apt-get或pip尝试在线下载。 构建镜像后,需要部署离线服务器。使用docker load导入镜像,然后运行容器。运行时要挂载模型目录,可能需要调整网络设置,如引用[4]中的IP配置,确保容器能访问所需的模型文件和其他资源。 最后,测试服务是否正常运行,比如发送推理请求验证。同时,用户可能需要配置持久化存储和监控,确保服务稳定。 用户提供的引用中提到了kubevirt和k8s的部署,但vLLM的Docker部署可能不需要这些,除非涉及更复杂的编排。需要专注于Docker本身的步骤,保持简单明了。 需要检查是否所有步骤都考虑到了离线环境的限制,比如依赖的离线安装、镜像的传输方法,以及如何在没有网络的情况下处理可能的缺失组件。确保提供的命令正确,例如docker build、docker save/load的使用,以及Dockerfile中的路径正确。 可能还需要提示用户注意Docker镜像与宿主机的兼容性,尤其是GPU驱动和CUDA版本,如果vLLM需要GPU加速的话。引用[3]中提到了kubevirt和virtctl,这可能与虚拟化有关,但vLLM部署可能更直接依赖于Docker和硬件资源。 总结步骤:准备Docker环境、获取或构建vLLM镜像、处理依赖、编写Dockerfile、构建镜像、部署离线服务器、运行并测试。需要分步骤解释,并给出示例命令,如Dockerfile内容、构建和运行命令,以及如何处理依赖项。</think>### vLLM离线Docker部署指南 #### 1. **准备Docker环境** - 在离线服务器上安装Docker引擎,需提前下载离线安装包(如`.deb`或`.rpm`文件)并通过脚本部署[^2]。 - 配置私有Docker镜像仓库(如Harbor),用于存储vLLM相关镜像[^1]。 #### 2. **获取vLLM镜像** - **在线环境构建镜像**(若可联网): ```dockerfile FROM nvidia/cuda:12.1.0-base-ubuntu22.04 RUN apt-get update && apt-get install -y python3-pip COPY requirements.txt . RUN pip install --no-cache-dir -r requirements.txt COPY vllm /app/vllm WORKDIR /app ``` 使用`docker build -t vllm-offline:latest .`构建镜像。 - **离线传输镜像**: ```bash docker save vllm-offline:latest > vllm-offline.tar # 将tar文件复制到离线服务器后加载 docker load < vllm-offline.tar ``` #### 3. **处理依赖项** - 离线安装`torch`等依赖: - 从PyPI官网手动下载`.whl`文件(如`torch-2.1.0+cu121-cp310-cp310-linux_x86_64.whl`)。 - 在Dockerfile中添加: ```dockerfile COPY torch-2.1.0+cu121-cp310-cp310-linux_x86_64.whl /tmp/ RUN pip install /tmp/torch-2.1.0+cu121-cp310-cp310-linux_x86_64.whl ``` #### 4. **部署与运行** - 启动容器(挂载模型目录): ```bash docker run -itd --gpus all \ -v /path/to/models:/models \ -p 8000:8000 \ vllm-offline:latest \ python3 -m vllm.entrypoints.api_server --model /models/llama-2-7b ``` - 验证服务: ```bash curl http://localhost:8000/generate -d '{"prompt": "Hello world"}' ``` #### 5. **配置持久化与网络** - 使用`docker volume create`创建持久化存储卷。 - 若需跨节点通信,参考[^4]配置静态IP确保容器网络可达。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@BangBang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值