教你3行Python代码,识别图片中的任意语言文字

本文介绍了使用easyocr模块进行OCR文本识别的方法,该模块支持70多种语言,包括中文。通过简单三行代码,即可完成文字检测,同时提供了模型文件的下载和存放路径说明,实现在Windows和Linux上的运行。示例展示了识别中文和多语言文字的效果,即便在复杂情况下也能取得良好效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好

今天给大家介绍一个超级简单且强大的OCR文本识别工具:easyocr.

这个模块支持70多种语言的即用型OCR,包括中文,日文,韩文和泰文等。Python学习资料点击免费领取

 

下面是这个模块的实战教程。

1.准备

pip install easyocr
复制代码

它会安装除了模型文件之外的所有依赖,模型文件则会在运行代码的时候下载。

对于Windows,如果在安装 Torch 或 Torchvision 时报错了,请按照pytorch.org 的官方说明安装 Torch 和 Torchvision。

如果你想使用显卡进行计算,你需要搜索下载CUDA,并在Pytorch网站上,确保选择正确的CUDA版本。如果仅打算在CPU模式下运行,请选择CUDA = None。

2.实战教程

这个模块用起来真的非常简单,三行代码完事了:

import easyocr
reader = easyocr.Reader(['ch_sim','en'])
result = reader.readtext('test.png')
复制代码

运行的过程中会安装所需要的模型文件,像下面这样:

 

不过它的下载速度非常慢,而且经常会失败,因此这里给出第二个解决方案:先下载好模型文件,再将其放置到所需要的位置:

文字检测模型(CRAFT)(必须)

pythondict.com/go/?url=htt…

中文(简体)模型(识别中文必须)

pythondict.com/go/?url=htt…

中国(传统)模型

pythondict.com/go/?url=htt…

拉丁模型

pythondict.com/go/?url=htt…

日本模型

pythondict.com/go/?url=htt…

韩文模型

pythondict.com/go/?url=htt…

泰文模型

pythondict.com/go/?url=htt…

阿拉伯文模型

pythondict.com/go/?url=htt…

下载完模型后,将文件放到下面这个位置。

Windows:C:\Users\用户名.EasyOCR\model Linux:~/ .EasyOCR / model

如下图所示:

 

重新执行脚本不会再提醒下载模型了:

import easyocr
reader = easyocr.Reader(['ch_sim'])
result = reader.readtext('test.png')
print(result)
复制代码

我随便截了一个直播弹幕的图片保存在脚本所在的文件夹下,命名为test.png:

 

 结果如下:

 

基本上所有应该识别的文字都识别出来了,效果非常不错。

另外也可以看到,输出采用列表格式,每个item分别表示对应文字的边界框,识别文本结果和置信度。

这个模块还能识别多语种的情况:

 

我将这张图片命名为test2.jpg,修改代码中对应的图片名称:

import easyocr
reader = easyocr.Reader(['ch_sim','en'])
result = reader.readtext('test2.jpg')
print(result)
复制代码

效果如下: 

 

这张图片很复杂,而且是中英文混杂在一起的情况,但是可以看到模型除了左上角的水印,图片中的文字基本都是识别出来了,尽管有部分文字识别错误,但还在可以接受的范围之内。

不过需要注意的是,虽然可以一次性识别许多种语言,但并非所有语言都可以一起用,通常是公共语言和一个特殊语种可以一起识别,相互兼容,比如英语和日语。

如果你的电脑没有GPU或者显存不足,可以加一个gpu=false的参数仅使用CPU运行:

reader = easyocr.Reader(['ch_sim','en'], gpu = False)
复制代码

另外,这个模块还支持直接使用命令行运行,相当方便,大家可以试试:

easyocr -l ch_sim en -f test.png --detail=1 --gpu=True
复制代码

我们的文章到此就结束啦,如果你喜欢今天的Python 实战教程,给文章点个赞吧👍。

 

 

 

 

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值