AI、AGI、AIGC、ChatGPT与DeepSeek:概念、区别与未来趋势

图片

一、概念定义


1.  人工智能(AI)
人工智能(Artificial Intelligence,AI)是计算机科学的一个分支,旨在创建能够执行通常需要人类智能的任务的机器和软件。它涵盖机器学习、自然语言处理、计算机视觉、机器人技术等多个领域。


2.  通用人工智能(AGI)
通用人工智能(Artificial General Intelligence,AGI)是AI的一个高级形态,旨在创建具有广泛认知能力的智能系统,使其能够像人类一样执行任何智力任务。AGI的核心特征包括适应性、推理与创造力,以及自我提升能力。


3.  人工智能生成内容(AIGC)
AIGC(Artificial Intelligence Generated Content)是指利用AI技术自动生成各种形式的内容,如文本、图像、音频和视频。它是AI的一个子集,专注于内容创作,广泛应用于媒体、娱乐、营销等领域。


4.  ChatGPT
ChatGPT是由OpenAI开发的基于GPT(Generative Pre-trained Transformer)架构的聊天机器人。它通过深度学习技术对大量文本数据进行预训练,能够理解和生成自然语言文本,实现与人类的自然交互。


5.  DeepSeek
DeepSeek是由杭州深度求索人工智能基础技术研究有限公司开发的先进AI大模型,融合了深度学习和自然语言处理技术,旨在为用户提供快速便捷的信息检索、知识图谱构建以及数据分析服务。


二、DeepSeek的核心技术与功能


1.  技术创新

•  MLA架构:新型多头潜在注意力机制,显存占用仅为传统架构的5%-13%。
•  MoE架构:DeepSeek采用专家混合架构,每次输入仅激活部分参数,大幅降低计算成本。
•  强化学习驱动:DeepSeek-R1模型通过强化学习技术提升推理能力,训练成本显著低于同类模型。
2.  核心功能
•  文本生成与对话:DeepSeek能够进行语言翻译、文本摘要、情感分析和命名实体识别等任务。
•  代码生成与优化:DeepSeek在代码生成任务中表现出色,支持多语言编程。
•  多模态支持:DeepSeek的多模态模型(如DeepSeek-VL2)在视觉问答、文档理解等任务中表现卓越。
3.  开源与生态
•  DeepSeek坚持开源路线,其模型和训练细节公开,促进了社区的活跃和技术创新。
•  DeepSeek的开源模型支持128K的上下文长度,为处理长文本和复杂任务提供了更大的灵活性。


三、未来趋势与挑战


1.  AI与AGI的未来
•  AI技术正在快速普及,从专业领域走向普通消费者。AGI作为AI的终极目标,其理论探索和实践正在加速。
•  AGI的发展将引发诸多伦理和法律问题,需要建立相应的规范。


2. DeepSeek的未来
•  DeepSeek凭借其高效、开源的特性,正在推动AI技术的普惠化和民主化。
•  DeepSeek在国际上获得了广泛关注,其技术被硅谷评价为“来自东方的神秘力量”,并引发了技术复现热潮。


3.  挑战
•  DeepSeek面临数据隐私与安全、AI模型潜在偏见、合规性等问题。
•  在与传统大厂的竞争中,DeepSeek需要进一步提升用户体验和可访问性。


四、总结
AI、AGI、AIGC、ChatGPT和DeepSeek是人工智能领域的重要概念和技术。AI是基础,AGI是目标,AIGC是工具,ChatGPT是应用,而DeepSeek则是AI技术的创新者和推动者。随着技术的不断进步,这些领域将相互促进,推动人工智能向更广泛的应用场景延伸。DeepSeek凭借其高效、开源的特性,正在成为AI领域的重要力量。

 

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值