一、智能体(Agent)
图片来源:百度
所谓智能体,指的是能独立采取行动以实现特定目标的 AI 实体。
想象你有一个贴心的小跟班,你让他干啥他就干啥。比如你让他查明天的天气,他立马就给你整得明明白白。
举个栗子,AI 面试官就是一个很棒的智能体。
它能够根据招聘要求,自主给候选人发送试邀请,然后自主进行视频面试,再自主进行面试评价,自主发送 offer。最后把招聘的统计报告发送给你。
是不是超省心?
当然了,智能体也存在很多缺陷,特别是在对准确性要求很高的场景,完全自主的智能体还存在明显的幻觉问题。
比如,某大厂发布的 DataAgent,你只需要说一句话,它就能查询数据库并生成高大上的图表。
但是仔细查看它生成的图表,就会发现很多问题,比如数据错误甚至数据编造。
在这种情况下,我们就需要使用 RAG、微调等手段减少智能体的幻觉问题。
二、多智能体系统(Multi-Agent System)
图片来源:百度
多智能体系统,就是把好几个智能体凑一块儿,让他们一起合作干大事。就像一个团队,每个成员各司其职,互相配合。
比如,在智能交通系统里,路口的智能体负责收集车流量和路况信息,然后把这些信息传给控制中心的智能体。控制中心的智能体一分析,就把信号灯的时间调得刚刚好,车流一下子就顺畅了。
相比于单个智能体,多智能体系统的要求就更高了。
比如,如果其中一个智能体死机了,整个智能体系统都会停摆。
要解决这个问题,可以给每个智能体都准备一个“克隆体”,如果一个智能体死机了,“克隆体”马上顶上去。
三、RAG(Retrieval-Augmented Generation)
图片来源:百度
RAG的本质就是先从指定的外部知识库中检索相关信息,再利用这些信息生成回答。
由于这些信息本质上来自于企业知识库,而不是 AI 的“自由生成”,因此会更加准确可信。
RAG 就像是给智能体配了个超级知识库。
智能体要是遇到复杂的问题,它就先在这个知识库里快速搜资料。把相关的内容都找出来后,再用自己的语言整理成一篇完整的回答。
举个栗子,智能客服系统里,RAG 就非常重要。
顾客要是问一些复杂的问题,比如产品的详细使用方法,智能客服就用 RAG 快速在知识库里找答案,然后生成一份详细、准确的回答发给顾客。
当然了,RAG 也存在很多难点。
比如知识库的内容必须做好分类、分级,避免相互冲突,同时还必须实时更新,否则“进去的是垃圾,出来的也是垃圾”。
四、工作流(Work Flow)
图片来源:coze
所谓工作流,是一系列相互关联的任务和步骤,按照一定的顺序执行,以完成特定的业务目标。
工作流就好比是一条流水线。把一个复杂任务分解成一个个小步骤,每个步骤由专门的工人(智能体组件)来完成。第一个工人干完了,把结果传给第二个工人,第二个工人接着干,直到最后完成整个任务。这样分工明确,质量和效果都很高。
在准确性要求很高的场景,如果让智能体自行规划任务执行步骤,可能会加重幻觉问题。
在这种情况下,我们就可以通过工作流,来固定智能体执行的步骤,从而减轻幻觉。
举个栗子,在订单处理智能体中,员工录好订单信息后,工作流自动触发库存检查。要是库存够,智能体就直接安排发货;要是不够,智能体就创建补货任务,并通知采购部门。同时,智能体还会给客户发个消息,告诉他预计发货的时间。
当然了,工作流也不是完美的。
要是工作流设计得不合理,比如步骤太多或者顺序不对,任务处理起来就会很慢。因此,需要专业的产品经理来进行梳理。
五、微调(Fine-Tuning)
所谓的微调,可以简单理解为,利用一部分行业或企业数据对大模型进行训练,从而让它更理解行业或企业的特定业务。
比如,行业有大量的专业名词或者“行业黑话”,标准大模型无法理解这些名词,自然就不可能给出准确的答复。那么,基于标准大模型的智能体,肯定也就无法准确的完成业务。
在这种情况下,我们就可以通过微调,来改善智能体对行业的理解。
举个栗子,通用的质量检测模型在处理企业的特定产品数据时,检测准确率较低。
于是,企业收集了大量生产线上的产品图像数据,包括合格品和次品,并对这些数据进行了标注。然后,企业使用这些数据对质量检测模型进行微调,结果提升了 25% 的检测准确率。
当然了,微调也不是完美的,比如对数据依赖度很高,成本也很高。一般来说,用于微调的数据,需要让专业的标注人员来进行标注。
六、函数调用(Function Calling)
图片来源:百度
虽然不太准确,但是我们可以把“函数”简单的理解为 “API”。
当我们有多个软件程序,就编制多个“函数“(API),这样当智能体需要使用某个程序的时候,就直接“调用”这个“函数“就可以了。
比如有个函数能算两个数的和,智能体要算 1 + 1,就直接拿这个函数出来,马上就算出 2(而不需要再写一个求和的程序)。
举个栗子,在图像处理系统里,智能体要处理一张照片,就得调用好多个函数。比如先调用边缘检测函数,把照片里物体的轮廓勾勒出来;再调用特征提取函数,分析物体的形状和纹理。这样一层一层处理下来,智能体就能认出照片里的东西。
函数调用虽然强大,但是也有很多问题。
比如,不同大模型之间的“函数调用”标准不同,导致为了适配多个大模型,可能需要写多个函数。
而 MCP就可以很好的解决这个问题。
七、MCP(Model Context Protocol)
MCP 是一种用于 AI 智能体与外部软件进行协作的标准开放协议。有了 MCP,一个软件只需要按 MCP 协议开发一个标准接口,即可被多个模型调用。
举个栗子,生活智能体通过 MCP 服务集成了多个软件工具,当我们要求智能体“点一杯咖啡”,它就可以自动调用“外卖程序”下单购买;当我们问智能体“今天是什么天气”,它就会自动调用“天气查询工具”。
MCP 也不是完美的,如果大家都遵循某一个大厂的 MCP 标准,就可能形成另一个“苹果税”。
八、A2A(Agent-to-Agent Protocol)
图片来源:百度
A2A(Agent - to - Agent Protocol)是谷歌推出的一项开源通信协议,旨在为不同框架开发的 AI 智能提供标准化协作方式,使其能够跨越技术壁垒,相互协同完成复杂流程。
说白了,MCP 解决了智能体与外部软件之间的协作问题;而 A2A 则解决了智能体与智能体之间的协作问题。
举个栗子,影像分析智能体和病历信息综合智能体就可以通过 A2A 协议来交流:
影像智能体把看到的病变特征发给病历智能体,病历智能体再把相关的病历信息发回来,俩人这么一对话,诊断报告就生成得又快又准。
好了,8 个核心概念讲完了,你学废了没?
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】