入坑大模型18个月的反思与贩私,非常详细收藏这一篇就够了

前几天开完一个有高层参加的会议,会后组里的技术大佬直接就开喷“要规划没规划,整天只知道对着几个糊弄老板的榜使劲刷”。我下意识地赶紧去拉住他,低声对他讲“你声音太小了,老板听不到的,回头我领你去大厦的保安室,你用紧急通报的喇叭讲给全楼的人听”。他仿佛意识到了什么,便回我若要率十余众攻入保安室需要准备什么样的装备以及后勤物资,于是会议的内容就这么愉快的被遗忘了。

做回工位上,暮然回首发现自己已经入了这个坑一年半了,反思起来也收获确实有一些,例如Megatron/DS/TE/FA等等核心实现,例如强化学习的世界观以及其与最优化领域世界观的融合。但是如果要用一个短语来描述我当下的心境,那必然是“跳坑救不了世界”,弃坑从文也救不了,我们这个业界从底层的逻辑上就被运作成了这样:开源社区成就了一批天命人,天命人自发地凝结成草台班子,草台班子又逐渐被开源社区淘汰。而这个循环过程中,这些本该会被淘汰的班子却会试图通过闭源与商业化立起牌坊,这就形成了我们这个业界遍地是坑的奇观。

如果给“坑”这个描述做一个明确定义,那么大致可以讲成“同质化、模式化、低效率、低创新”的竞争系统,颇有当下低端芯片、商业城区、成人教育、新能源汽车、供应链金融这些领域的感觉。只不过大模型比这些事情多了一层窗户纸——黑盒性质,换句话说他不是被设计出来的,而是一种对自然的探索发现,而且又有着极高的资金门槛,所以对一般公众而言,其有着仿佛大型强子对撞机探索宇宙基本原理一般的隔阂感。然而大语言模型本身又具有极强的人文性,类似于经济学,这便又给了草台班子极大的容错率。

我很早以前就察觉,当下基于qkv attention + next token prediction + scaling的路径几乎已经快走到了尽头,并不是说scaling不能继续发挥作用,而是说scaling带来的收益已经远不足对其的投入。而且我的一个暴论是,scaling会导致大模型更加的像大模型——“丰富且平庸”,这就是之所以你会感觉到一个回答是大模型生成的原因。虽然反过来讲,丰富且平庸的回答并非毫无意义,因为它至少可以被用来做为创作的原材料。但是,于智能本身而言这种性质毫无意义,更不要提草台班子们打着要做智能的旗号最后只做出了一堆丰富且平庸的产品。

当然如果说上面这条路死了,或者有些更悲观的观点说联结主义死了,大模型也不是不能继续往下发展,因为显然除了创作类的需求,在提升生产力的过程中我们也有“理解复杂指令并精确输出”的需求。在我的脑海中,这种需求会促进“联结符号主义”的发展,类似于alpha proof中formalizer network、lean与solver network三者之间的协作,而这便是接下来几年大模型发展最大的一个契机。或许草莓跟猎户座也是类似的玩意,但是只可惜这些都是闭源的,草台班子骨子里是不太敢真的去碰这些东西的,因为他们内心中很清楚什么成就了他们。

所以你们看我黑了这么久草台班子,那么我也给草台班子做一个定性:一套低配的体制圈子。其低配体现在以下三个方面:制度不成熟、更加的人治;神权(开源社区)的影响力更大;王国之间来去比较自由、对人的行为缺乏约束。这里面的诸多问题恕我无法展开来讲,一来太招黑,二来也会冲到塔。我唯一能讲的给小朋友们的建议就是不要把自己活成高瀚文,或者尽量一开始就不要跳这个坑,如果你的理想真的是诗、智能与远方。另外其实我觉得国内做开源的几家都挺好的,比如seek(不是软文,因为他们嫌我年龄大直接挂了我的简历),主要原因是一来他们背靠金融系,有自己特定的存在价值,不需要为钱发愁;二来里面真的有些不错的傻孩子在里面为了梦想而奋斗,技术氛围很好。

事到如今,恍惚间感觉自己仿佛被焊死在零式里面的生体智能,最终不知道会以什么方式陪着大模型这个业界殉葬。希望明天会发生一些好事情吧。

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值