【职位亮点】
薪资对标一线,open谈
级别:对标 P7-10
一、大模型推理优化研发工程师-算子优化/编译(北京/深圳/上海/杭州)
岗位职责
1.研发及优化大模型推理引擎、PD分离推理调度系统;
2.优化大模型推理性能,提升吞吐并控制成本;
3.优化大模型推理框架,提升框架易用性和可调试性。
岗位要求
1.熟练掌握C/C++、Python编程语言,具备良好的coding和调试能力;
2.熟悉GPU/AI芯片编程,如CUDA,OpenCL,Ascend C等,熟悉cutlass等加速库是加分项;
3.熟悉主流大模型推理框架,如vllm,sglang,tensorrt-llm,FasterFransformer等;
4.熟悉各类深度学习网络和算子底层实现细节,训练和推理模型调试、调优有实操经验优先;
5.熟悉并行策略,如模型并行、流水线并行等,了解NVLINK、GPU通信者优先;
6.具备GPU、AI芯片体系结构知识,熟悉芯片特性,具备系统性能分析和调优经验优先。
二、大模型推理引擎研发工程师(北京/深圳/上海/杭州)
岗位职责
1.研发及优化大模型推理引擎、PD分离推理调度系统;
2.支持主流GPU和异构AI芯片,优化大模型推理性能,打造极致性能成本优势。
岗位要求
1.熟练掌握C/C++、Python编程语言,具备良好的coding和调试能力;
2.熟悉GPU/AI芯片编程,如CUDA,OpenCL,Ascend C等,熟悉cutlass等加速库是加分项;
3.熟悉主流大模型推理框架,如vllm,sglang,tensorrt-llm,FasterFransformer等;
4.熟悉各类深度学习网络和算子底层实现细节,训练和推理模型调试、调优有实操经验优先;
5.熟悉并行策略,如模型并行、流水线并行等,了解NVLINK、GPU通信者优先;
6.具备GPU、AI芯片体系结构知识,熟悉芯片特性,具备系统性能分析和调优经验优先;
7.加分项:;
8.机器学习或者体系结构相关顶会论文;
9.参与vllm、sglang等开源项目贡献者;
10.熟悉推理服务框架,具备服务部署经验者优先,有超大模型分布式部署经验优先。
三、 Pytorch框架研发工程师/专家(北京/深圳/上海/杭州)
岗位职责
1.参与太极分布式深度学习系统的研发工作,重点负责GPU及异构芯片的适配与性能优化;
2.深入研究框架引擎内部机制,参与或主导前沿大模型相关技术的探索与实践;
3.与团队合作,持续提升系统的稳定性和扩展性,确保系统能够满足大规模深度学习任务的需求。
岗位要求
1.精通PyTorch框架,对Tensorflow/Mindspore等深度学习框架有一定了解;
2.熟悉当前主流大模型,具有百亿/千亿参数规模大模型的分布式训练经验者优先;
3.掌握并行计算、CUDA编程、网络通信、系统优化及集群硬件架构等HPC相关知识;
4.具备出色的编程能力,熟练使用Python,掌握C++、数据结构与算法设计,熟悉Linux/Unix系统及Shell编程,熟练使用Git进行版本控制;
5.拥有一年以上AI分布式系统研发经验,计算机、人工智能、机器学习等相关专业硕士及以上学历,具有丰富相关经历的本科生也可考虑。
四、大模型推理加速工程师(北京/深圳/上海/杭州)
岗位职责
1.配合算法工程师,推动深度学习相关算法的落地,打造高吞吐、低延时的推理系统;
2.优化大模型推理性能,提升吞吐并控制成本;
3.优化大模型推理框架,提升框架易用性和可调试性。
岗位要求
1.熟练掌握 C/C++、Python语言,有计算机体系结构背景或软件开发背景,熟悉系统性能调优的方式;
2.具备基础的GPU编程能力,包括但不限于Cuda、OpenCL;熟悉至少一种GPU加速库,如cublas、cudnn、cutlass等;
3.有Tensorrt/FasterTransformer/Tensorrt-llm/vllm等深度学习推理框架的实际使用经验;
4.熟悉各类深度学习网络和算子底层实现细节,训练和推理模型调试、调优有实操经验优先;
5.熟悉CPU/GPU异构加速瓶颈分析方法,有服务器端 AI 芯片、GPU加速经验优先;
6.熟悉分布式推理常用加速方法,有超大模型分布式部署经验优先。
五、大模型训练框架研发工程师(北京/深圳)
1.参与开发优化大模型训练框架,支持单任务万卡以上规模高效稳定训练;
2.参与NLP、多模态大模型结构设计,并联合业务进行模型训练效率和效果验证;
3.参与文生图、文生视频、文生3D等业务的训练性能加速
4.参与低精度训练性能优化和业务推广、参与大窗口训练性能优化
岗位要求
1.熟练使用PyTorch框架,可对DDP训练的代码进行性能分析和优化。
2.熟练使用主流大模型训练框架DeepSpeed、Megatron,掌握3D并行、ZeRO机制、Flash-Attn等的原理、使用场景、优劣势以及可优化方向。
3.有ViT、SD、DiT模型训练性能优化经验者优先。
4.熟练掌握CUDA性能优化手段,有算子编写优化项目经验者优先。
5.对大模型前沿技术比较敏锐者优先。
6.有实际大模型的训练调参和效果评测项目经验的优先;
7.良好的沟通能力、解决问题能力。
六、 大模型强化学习研究员(北京)
AI Lab 长期致力于推动人工智能前沿技术发展,特别是大模型前沿算法创新与突破。当前,深圳实验室正寻求大模型强化学习方向的专家级研究员,专注于开发探索稳定而有效的强化学习算法,在大模型的复杂推理、Agent自主探索与学习等场景激发与提升大模型的能力。职位级别将根据候选人的经验以及成就来确定。
岗位职责:
1.带领团队开展前沿算法研究,重点攻克大模型中强化学习算法设计与优化,研究方向包括但不限于:强化学习算法、奖励建模、世界模型等;
2.强化学习算法要在大模型的复杂推理、Agent自主探索与学习等场景进行大规模实验验证,推动研究成果在行业内落地,并发表有影响力论文;
3.负责探索大模型的前沿技术,结合未来实际应用场景,提供技术解决方案。
岗位要求:
1.全球高校计算机科学、机器学习、人工智能等相关专业博士;
2.有大模型前沿技术领域全球领先企业的工作经验;
3.精通Python编程语言,具有基于PyTorch或TensorFlow等深度学习工具的技术开发经验;
4.具备丰富的学术研究经验,在世界顶尖会议NeurIPs、ICLR、ICML、ACL、EMNLP等发表过文章,有深度学习学术或工程项目经验;
5.具备良好的沟通能力以及团队协作精神,能够与跨只能团队共同推进项目进展与突破。
七、专家级研究员-大语言模型复杂推理方向(深圳)
AI Lab
岗位职责
1.带领团队开展前沿算法突破研究,专注于提升大语言模型的推理能力,包括但不限于复杂问题推理能力、复杂任务分解与完成能力等,研究成果在业界产生广泛影响;
2.负责开发新颖的高效、可扩展模型架构和算法,推动大语言模型推理能力提升;
3.负责探索大语言模型的前沿技术,结合未来实际应用场景,提供技术解决方案;
4.参与公司重大项目的研发工作,提供专业的技术指导和支持;
5.跟踪并分析全球大语言模型领域的最新研究进展,为公司技术创新和发展提供战略建议。
岗位要求
1.全球高校计算机科学、机器学习、人工智能等相关专业博士;
2.有大语言模型前沿技术领域全球领先企业的工作经验;
3.精通Python或C++编程语言,具有基于PyTorch或TensorFlow等深度学习工具的技术开发经验;
4.具备丰富的学术研究经验,在世界顶尖会议NeurIPs、ICLR、ICML、ACL、EMNLP等发表过文章,有深度学习学术或工程项目经验;
5.具备良好的沟通能力以及团队协作精神,能够与跨职能团队共同推进项目进展与突破;
6.对技术充满热情,具备较强的创新意识和解决问题的能力。
八、 AGI模型架构研究员(深圳)
AI Lab
我们致力于打造具备人类级甚至超人类级通用智能(AGI)的核心系统架构。你将作为核心研发力量参与构建具备多模态感知、自主学习与推理能力的大模型体系,推动其在真实世界中的通用泛化能力。项目目标是构建原生支持视觉、语音、文本等多模态联合理解与生成的大模型系统,并与环境深度交互,实现从AGI向ASI的跃升。
岗位职责:
1、设计具备多模态联合感知、推理、记忆与生成能力的统一大模型架构(视觉/音频/文本);
2、构建支持持续学习、多级记忆、主动探索和自演进的大模型系统;
3、推进Agent化方向,使模型具备自主任务规划、跨模态交互、工具使用和自我优化能力,深度参与通用表征、音视频同频建模、世界模型、稀疏建模等关键模块的设计
岗位要求:
1、精通 Transformer 类模型及其在语言、多模态领域的架构设计与优化;
2、有构建或优化超大规模模型(>Billion-scale)经验,熟悉SFT、RLHF、自监督等训练范式;
3、在以下方向有深入理解或实践经验者优先:
a、多模态模型(如视觉语言模型、音视频模型)
b、强化学习、自主智能体系统
c、复杂推理与规划(如 search+LLM,世界建模)
d、稀疏建模与动态路由机制
e、具备良好的工程实现能力与系统性思维,能推动前沿研究在大模型系统中落地
f、在顶会/顶刊(NeurIPS, ICLR, CVPR, ACL 等)发表过相关方向论文
研究重点方向:
多模态统一架构:原生支持视觉、语音与文本的同频建模与跨模态推理;
持续学习与记忆机制:设计支持长期记忆调用与任务迁移的分离式架构(如Memory + Core Model)
世界模型与因果推理:模型能预测环境状态、规划行为,并不断更新认知结构
稀疏与模块化模型:探索高效、可扩展、可解释的超大规模稀疏架构
自演进与主动数据生成:结合RL、自监督、环境交互等方式建立自我成长机制
跨模态理解与生成:提升系统在真实物理环境中多模态联合生成与决策能力
智能体能力迁移:任务泛化与工具组合使用能力的系统性设计与增强
九、语音与音频理解方向研究员(大模型与多模态方向)北京/深圳
AI Lab
岗位职责:
1. 跟踪业界最新的语音生成算法研究,探索下一代语音、音频生成新范式,拓展语音生成边界能力;
2. 探索多模态语音大模型的前沿技术,结合文本、语音、视觉等技术提升语音交互体验;
3. 负责语音大模型的技术研发工作,推动模型性能提升与创新应用。
岗位要求:
1. 计算机科学、人工智能、电子工程、信号处理等相关专业硕士、博士研究生;
2. 掌握语音大模型、语音合成、语音识别、音频生成、语音转换、语音Codec等一项或多项研究和开发经验;
3. 熟悉主流对话大模型(如GPT4o、GLM-4-Voice、Qwen2.5-Omni、Voila等),有相关项目实践经验者优先;
4. 熟练掌握PyTorch等深度学习框架,有大模型训练框架Megatron/Deepspeed实践经验者优先;
5. 熟悉大模型相关结构设计及原理,有大规模预训练、后训练经验者优先。
十、语音与音频理解方向研究员(语音生成方向)北京/深圳
AI Lab
岗位职责:
我们正在构建原生支持视觉、音频与文本的大规模多模态模型体系,以推动人工智能系统实现对物理世界的全面感知与理解。你将加入语音与音频方向的核心研究团队,围绕以下关键研究任务开展工作:
1、研发具备通用能力的端到端语音大模型,包括多语言语音识别、语音翻译、语音合成,副语言信息理解,音频理解 等;
2、推进 语音表征学习 与 语音编码/解码 架构研究,构建适用于多任务、多模态的统一声学表征;
3、探索音频和语音在多模态大模型中的表征对齐与融合机制,与图像、文本联合建模;
4、构建并维护高质量的语音多模态数据集、自动标注与数据合成技术;
任职要求:
1、计算机、电子工程、人工智能、语言学或相关领域博士,或硕士加多年相关工作经验;
2、深入理解语音音频信号处理、声学建模、语言模型和大模型架构;
3、熟练掌握 语音识别,语音合成,语音翻译等 一项多多项系统开发流程,具有多语言、多任务或端到端系统经验者优先;
对以下方向具备深入研究或实践经验者优先:
语音表征预训练(如 HuBERT, Wav2Vec, Whisper 等)
多模态对齐与跨模态建模(音视频和文本)
有推动大模型在音频理解任务上达到 SOTA 性能的经验优先;
熟练掌握 PyTorch、TensorFlow等深度学习框架,有大规模训练与分布式系统经验者优先;
熟练 Transformer 类模型及其在语音、多模态领域的训练和推理
十一、大模型-精调算法工程师-问答&RAG方向(北京/深圳)
岗位职责
1.负责大语言模型在知识问答能力上的算法设计优化及实现工;
2.建设RAG体系,对RAG链路中的重要模块进行优化,提升模型的性能效果;
3.调研业界前沿算法,追踪最前沿的技术动态,并应用在相关的项目中;
4.参与产品讨论,基于技术对产品提出改进建议。
岗位要求
1.有大语言模型应用经验优先,包括精调(SFT)、强化(DPO,PPO)等技术的落地;
2.有RAG或LLM Agent的应用落地经验者优先;
3.熟悉TensorFlow,Keras,Pytorch等常规深度学习框架;
4.熟悉自然语言处理方向常用的理论和方法,熟悉阅读理解、问答、搜索、语言模型、预训练等核心技术;
5.具有良好的数学基础,良好的英语阅读能力,具备强烈的进取心、求知欲及团队合作精神,热衷于追求技术创新。
十二、大模型精调算法工程师-RAG可信方向(北京/深圳)
岗位职责
1.负责大语言模型在知识问答能力上的算法设计优化及实现工;
2.建设可信RAG体系,包括全网站、号一体化可信内容理解,建设质量&权威体系,优化内容索引、排序、RAG效果;
3.调研业界前沿算法,追踪最前沿的技术动态,并应用在相关的项目中;
4.参与产品讨论,基于技术对产品提出改进建议。
岗位要求
1.有大语言模型应用经验优先,包括精调(SFT)、强化(DPO,PPO)等技术的落地;
2.有全网内容理解、质量权威建模、搜索召回排序经验优先;
3.熟悉TensorFlow,Keras,Pytorch等常规深度学习框架;
4.熟悉自然语言处理方向常用的理论和方法,熟悉阅读理解、问答、搜索、语言模型、预训练等核心技术;
5.具有良好的数学基础,良好的英语阅读能力,具备强烈的进取心、求知欲及团队合作精神,热衷于追求技术创新。
十三、大模型推理能力方向(北京/深圳)
岗位职责:
1. 负责大语言模型(LLM)规划、推理、反思能力的研究,提升大语言模型的高阶推理能力;
2. 跟进推理领域的前沿技术,将其应用于大模型基座,持续提升大模型的推理能力;
岗位要求
1. 有过大模型代码/数学/reasoning方向的研发经历
2. 在post-training方向有一定研究基础,熟悉SFT/DPO/PPO/Reward Model等pipeline。
3. 较强的工程实现能力,熟练使用Python语言,有实际编程项目经验,熟悉DeepSpeed、Megatron等分布式训练框架,熟练使用pytorch深度学习框架;
4. 计算机科学、机器学习、统计学、应用数学等相关专业在校硕士、博士生。
5. 在高水平国际会议和学术期刊发表过相关论文,或有高水平竞赛获奖经历优先。
十四、大模型语音算法工程师(北京/深圳/上海)
岗位职责
1.负责大模型语音模态的设计、开发和优化,包括但不限于语音/音频数据清洗、模型设计、训练策略等方面的研究与应用;
2.参与语音识别、语音合成、声音克隆等相关大模型语音模态能力的建设,提高跨模态整体效果。
岗位要求
1.计算机科学、机器学习、人工智能、应用数学等相关专业,硕士及以上学历;
2.在语音信号处理、大语言模型、深度学习等领域具备扎实的研究基础,掌握领域内的最新技术进展;
3.较强的工程实现能力,熟练掌握C/C++, JAVA,Python等至少一种语言,熟练使用主流深度学习框架;
4.有较强的学术比赛经验、或者在重要数据集的Leaderboard上排名靠前、或在开源社区有较大影响力等优先;
5.有高质量论文发表者优先(如INTERSPEECH,ICASSP,CVPR,AAAI,NIPS,TIP,ICCV,ECCV等);
6.具备激情,好学,良好的团队合作和沟通能力。
十五、多模态算法工程师(北京/深圳/上海)
视频生成基模这边的需求
1、RL背景 来做后训练相关,IC
2、数据科学背景专做数据科学研究,IC
3、后训练的负责人和tech lead
4、扩散模型预训练负责人
岗位职责
1.负责垂直场景多模态大模型研发,包括图文、视频、音频等多个模态的预训练和SFT训练,探索合成数据在多模态训练上的应用;
2.负责大模型安全、内容治理、电商等多场景业务的内容理解,包括多模态表征、图文/视频意图理解、相同/相似判断、自动问答等;
3.负责跟踪和研究大模型前沿问题,并应用于解决实际的业务痛点。
岗位要求
1.计算机科学、机器学习、人工智能、应用数学等相关专业,硕士及以上学历;
2.在CV、多模态有相应的技术研发,了解LLM、多模态融合、人脸识别、目标检测等相关技术;
3.熟悉深度学习框架,如TensorFlow或Pytorch;了解分布式训练框架,如Deepspeed和Meatron-LM等,并有一定的多机多卡分布式训练经验;
4.较强的工程实现能力,熟练掌握C/C++, JAVA,Python等至少一种语言;
5.在顶级学术会议上发表论文者优先,包括而不限于NIPS/ICML/CVPR/ICCV/ECCV。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓