PTA 郑州大学2023-2024第一学期算法设计与分析-实验6(第四章)

1. 月饼

贪心就行了

三个东西,一个Pair<int,int>,可以用结构体写。这里自带了排序规则

sort函数,相信应该都知道

reverse,翻转,可以理解为数组头变数组尾,好处是默认排序时可以不指定排序方式,排完reverse即可

#include<bits/stdc++.h>
#define endl "\n"
//#define int long long
#define AC return
#define pleaseqwq 0

using namespace std;

const int N=2e5+10;
typedef pair<double,double>PII;
typedef pair<string,int>PSI;
typedef pair<double,double>pdd;

PII a[N];

signed main(){
	//cin.tie(0),cout.tie(0);
	//ios::sync_with_stdio(false);
	
	int n,d;
    cin>>n>>d;
    for(int i=0;i<n;i++){
        cin>>a[i].second;
    }
    for(int i=0;i<n;i++){
        cin>>a[i].first;
        a[i].first/=a[i].second;
    }
    sort(a,a+n);
    reverse(a,a+n);
    double res=0;
    int cnt=0;
    for(int i=0;i<n;i++){
        if(cnt+a[i].second<d){
            res+=a[i].first*a[i].second;
            cnt+=a[i].second;
        }else{
            res+=(d-cnt)*a[i].first;
            break;
        }
    }
    printf("%.2f",res);
	AC pleaseqwq;
}

2. 汽车加油问题

我是小丑,第一眼还以为是dp,结果就贪心就好了

果然dp是我最差的部分啊,甚至都一眼看不出来不是dp题

贪心就行了

#include<bits/stdc++.h>
//#define int lo
<think>好的,我需要帮助用户找到如何用Python计算二叉树某一层的节点数量。首先,我得回顾一下二叉树的基本结构和遍历方法。用户提到了引用[2]中的代码,其中有一个函数TransLevel可以打印某一层的所有节点。看起来这个函数使用递归方法,逐层递减level参数,直到level为1时打印当前节点的数据。不过用户需要的是计算节点数量,而不是打印,所以可能需要修改这个函数,让它计数而不是打印。 首先,我需要理解引用[2]中的代码。他们定义的Node类有data、left和right属性。TransLevel函数接受root和level参数。当level减到1时,检查节点是否存在,并打印数据。否则,继续递归遍历左子树和右子树,level减1。但这里有个问题,原函数在递归时可能重复计数,或者没有正确累加数量。我需要调整这个函数,让它返回该层的节点数。 可能的思路是,递归函数在每一层中,如果当前level是1,且节点存在,就返回1。否则,递归左子树和右子树,将它们的返回值相加。例如,对于左子树,传入level-1,同样右子树也是level-1。这样,当递归到目标层时,每个存在的节点都会贡献1,最终总和就是该层的节点数。 但是需要考虑节点是否存在的情况。例如,当root为None时,返回0。这样,即使递归到左或右子树为None,也不会增加计数。因此,修改后的函数可能像这样: def count_level_nodes(root, level): if root is None: return 0 if level == 1: return 1 return count_level_nodes(root.left, level-1) + count_level_nodes(root.right, level-1) 这样,每次递归调用都会将当前节点的左右子节点带入下一层,直到目标层。当level为1时,只要当前节点存在,就算一个节点。然后左子树和右子树的计数结果相加,得到该层的总节点数。 测试一下这个函数。例如,一个简单的二叉树: 1 / \ 2 3 / 4 假设要求第3层的节点数。第三层应该是节点4所在层。对于根节点1,level=3,第一次递归调用左右子节点2和3,level=2。然后对于节点2,level=2会调用其左右子节点4和None,level=1。此时,节点4返回1,None返回0。节点3的左右子节点都是None,所以返回0。总和是1(来自节点4)。所以结果正确。 另外,需要考虑完全二叉树的情况,如引用[4]提到的。例如,完全二叉树可能最后一层不满,但节点集中在左边。这种情况下,该函数也能正确计算,因为递归会遍历所有可能的路径,无论是否填满。 用户可能需要的代码结构可能类似于引用[2],但返回数量而非打印。因此,可以定义一个新的函数,或者修改原来的函数。同时,确保节点类的定义正确。例如,用户提供的Node类可能有不同的属性名,比如left和right是否正确? 在引用[2]中,节点类定义为: class Node(object): def __init__(self, data=0, left=0, right=0): self.data = data self.left = left self.right = right 这里需要注意,left和right的默认值是0,但实际应该为None。可能用户在实例化时,如果没有子节点,应该传入None。例如,当left=0时,可能被误认为是一个节点,但实际应该是None。所以正确的定义应该是: class TreeNode: def __init__(self, data=0, left=None, right=None): self.data = data self.left = left self.right = right 不过用户提供的代码可能存在这样的问题,但假设用户已经正确定义了节点类,那么函数可以正常工作。 另一个可能的优化是使用层序遍历(广度优先搜索)来计算特定层的节点数。例如,使用队列来遍历每一层,记录当前层数,当达到目标层时,统计队列中的节点数。这种方法可能更直观,尤其是当层数较大时,递归可能导致栈溢出,而迭代方法更安全。 例如,层序遍历的实现: def count_level_nodes_bfs(root, target_level): if root is None or target_level < 1: return 0 queue = [(root, 1)] count = 0 while queue: node, current_level = queue.pop(0) if current_level == target_level: count +=1 elif current_level < target_level: if node.left: queue.append((node.left, current_level+1)) if node.right: queue.append((node.right, current_level+1)) return count 这种方法遍历到目标层时统计节点数量,一旦当前层超过目标层就可以停止,但可能需要遍历到目标层为止。对于较大的层数,这可能比递归更高效,因为递归会遍历所有可能的路径,而BFS可以提前停止,但实际上在代码中需要处理所有前面的层。 不过用户的问题是要求Python实现,所以两种方法都可以考虑。递归方法代码更简洁,而BFS方法可能更高效,尤其是当目标层较浅时。 综合来看,用户可能需要一个清晰的解决方案。所以,可能需要提供两种方法:递归和迭代(BFS)。但根据用户给出的引用[2],他们可能更倾向于递归方法。因此,可以基于递归方法进行修改,如前面的count_level_nodes函数。 最后,确保代码示例正确,并测试可能的边界情况,如空树、层数超过树的高度等。例如,当树为空时,返回0;当层数为0或负数时,返回0;当层数超过树的高度时,返回0。 总结,解决方案包括: 1. 定义二叉树节点类。 2. 递归函数计算指定层节点数。 3. 可能的迭代方法。 4. 测试用例说明。 现在需要将这些整理成用户友好的回答,并提供相关的问题。</think>### Python实现求二叉树指定层的元素个数的方法 要计算二叉树某一层的节点数量,可以通过递归或层序遍历(广度优先搜索)两种方法实现。以下分别说明实现步骤和示例代码: --- #### 方法一:递归法(深度优先搜索) **核心思路**:逐层递减目标层级,当到达指定层级时统计节点数量。 ```python class TreeNode: def __init__(self, data=0, left=None, right=None): self.data = data self.left = left self.right = right def count_level_nodes(root, target_level): if root is None: return 0 if target_level == 1: return 1 # 当前层为指定层,计数+1 # 递归左子树和右子树,层级减1 left_count = count_level_nodes(root.left, target_level-1) right_count = count_level_nodes(root.right, target_level-1) return left_count + right_count ``` **示例分析**: - 对于二叉树: ``` 1 / \ 2 3 / 4 ``` - 第3层的节点数为1(仅节点4)。 - 调用`count_level_nodes(root, 3)`返回1。 **边界情况**: - 树为空时返回0。 - 目标层小于1时返回0。 - 目标层超过树的高度时返回0。 --- #### 方法二:迭代法(层序遍历) **核心思路**:使用队列逐层遍历,统计目标层的节点数。 ```python def count_level_nodes_bfs(root, target_level): if root is None or target_level < 1: return 0 from collections import deque queue = deque([(root, 1)]) count = 0 while queue: node, current_level = queue.popleft() if current_level == target_level: count += 1 elif current_level < target_level: if node.left: queue.append((node.left, current_level+1)) if node.right: queue.append((node.right, current_level+1)) return count ``` **优势**:避免递归栈溢出的风险,适合层级较深的情况[^2]。 --- ### 示例测试 ```python # 构建示例二叉树 root = TreeNode(1) root.left = TreeNode(2) root.right = TreeNode(3) root.left.left = TreeNode(4) print(count_level_nodes(root, 3)) # 输出1 print(count_level_nodes_bfs(root, 3)) # 输出1 ``` --- ### 对比两种方法 | 方法 | 时间复杂度 | 空间复杂度 | 适用场景 | |--------|----------------|----------------|------------------| | 递归法 | $O(2^n)$(最坏)| $O(h)$(栈深度)| 层级较浅的树 | | 迭代法 | $O(n)$ | $O(n)$ | 层级较深或平衡树 | --- ### 相关问题 1. **如何判断一棵树是否为完全二叉树?** (参考完全二叉树的定义[^4]) 2. **如何计算二叉树的深度?** (递归法:`max(左子树深度, 右子树深度) + 1`[^1]) 3. **如何求二叉树所有路径的和?** (递归遍历路径并累加节点值[^3])
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值