离散化

本文讨论了离散化过程中的两种方法——保序与不保序,通过实例说明了它们在数值处理中如何保持或改变数字间的相对关系。保序离散化通过排序和二分查找实现,适用于数值大但稀疏的数据;而不保序离散化则利用map结构,快速映射原始数值。
摘要由CSDN通过智能技术生成

例题:电影 acw103 - 小志61314 - 博客园 (cnblogs.com)  保序

         程序自动分析 acw237 - 小志61314 - 博客园 (cnblogs.com)   不保序

离散化应用在数值特别大,但是数据的个数很小,也就是数据很稀疏的情况下,然后取新的数一一对应,虽然把数字的值变了(可以还原的),但是数字之间对应关系没变

离散化有两种:保序和不保序

保序就是排序+二分(有正序和逆序)

不保序就是直接map/unordered map

板子:保序

const int N=1000;
int va[N],val[N];
vector<int> v;
int get(int x)
{
	return lower_bound(v.begin(),v.end(),x)-v.begin()+1;
}
int main(){
	int n;
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		cin>>va[i];
		v.push_back(va[i]);
	}
	sort(v.begin(),v.end());
	v.erase(unique(v.begin(),v.end()),v.end());
	for(int i=1;i<=n;i++) val[i] = get(va[i]);
	for(int i=1;i<=n;i++) cout<<val[i]<<endl;

不保序:

map<int,int> mp;//对应着某个数的编号 
int get(int x)
{
    if(!mp[x])
    {
        n++;
        mp[x]=n;
    }
    return mp[x];
} 

上面是我自己的习惯,下面是算法进阶上的离散化板子

// 离散化
void discrete() {
	sort(a + 1, a + n + 1);
	for (int i = 1; i <= n; i++) // 也可用STL中的unique函数
		if (i == 1 || a[i] != a[i - 1])
			b[++m] = a[i];
}

// 离散化后,查询x映射为哪个1~m之间的整数
void query(int x) {
	return lower_bound(b + 1, b + m + 1, x) - b;
}


// 归并排序求逆序对
void merge(int l, int mid, int r) {
	// 合并a[l~mid]与a[mid+1~r]
	// a是待排序数组, b是临时数组, cnt是逆序对个数
	int i = l, j = mid + 1;
	for (int k = l; k <= r; k++)
		if (j > r || i <= mid && a[i] < a[j]) b[k] = a[i++];
		else b[k] = a[j++], cnt += mid - i + 1;
	for (int k = l; k <= r; k++) a[k] = b[k];
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值