例题:电影 acw103 - 小志61314 - 博客园 (cnblogs.com) 保序
程序自动分析 acw237 - 小志61314 - 博客园 (cnblogs.com) 不保序
离散化应用在数值特别大,但是数据的个数很小,也就是数据很稀疏的情况下,然后取新的数一一对应,虽然把数字的值变了(可以还原的),但是数字之间对应关系没变
离散化有两种:保序和不保序
保序就是排序+二分(有正序和逆序)
不保序就是直接map/unordered map
板子:保序
const int N=1000;
int va[N],val[N];
vector<int> v;
int get(int x)
{
return lower_bound(v.begin(),v.end(),x)-v.begin()+1;
}
int main(){
int n;
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>va[i];
v.push_back(va[i]);
}
sort(v.begin(),v.end());
v.erase(unique(v.begin(),v.end()),v.end());
for(int i=1;i<=n;i++) val[i] = get(va[i]);
for(int i=1;i<=n;i++) cout<<val[i]<<endl;
不保序:
map<int,int> mp;//对应着某个数的编号
int get(int x)
{
if(!mp[x])
{
n++;
mp[x]=n;
}
return mp[x];
}
上面是我自己的习惯,下面是算法进阶上的离散化板子
// 离散化
void discrete() {
sort(a + 1, a + n + 1);
for (int i = 1; i <= n; i++) // 也可用STL中的unique函数
if (i == 1 || a[i] != a[i - 1])
b[++m] = a[i];
}
// 离散化后,查询x映射为哪个1~m之间的整数
void query(int x) {
return lower_bound(b + 1, b + m + 1, x) - b;
}
// 归并排序求逆序对
void merge(int l, int mid, int r) {
// 合并a[l~mid]与a[mid+1~r]
// a是待排序数组, b是临时数组, cnt是逆序对个数
int i = l, j = mid + 1;
for (int k = l; k <= r; k++)
if (j > r || i <= mid && a[i] < a[j]) b[k] = a[i++];
else b[k] = a[j++], cnt += mid - i + 1;
for (int k = l; k <= r; k++) a[k] = b[k];
}