1.机器学习(MachineLearning,ML)是当前比较有效的一种实现人工智能的方式。
深度学习(DeepLearning,DL)是机器学习算法中最热门的一个分支,近些年取得了显著的进展,并替代了大多数传统机器学习算法。
2 . 机器学习 :机器学习是专门研究计算机怎样模拟或实现人类的学习行为
以获取新的知识或技能,重新组织已有的知识结构,使之不断改善自身的性能。
2.1 机器学习的实现 : 训练和预测 ,类似于 归纳和演绎
归纳 :从具体案例中抽象一般规律。
演绎 : 从一般规律推导出具体案例的结果。
2.2 机器学习的方法论
“机器思考”的过程中确定模型的三个关键要素:假设、评价、优化。
模型有效的基本条件是能够拟合已知的样本。
衡量模型预测值和真实值差距的评价函数也被称为损失函数(损失Loss)。
模型假设、评价函数(损失/优化目标)和优化算法是构成模型的三个关键要素。
3 . 深度学习
机器学习算法理论在上个世纪90年代发展成熟,在许多领域都取得了成功,但2010年以后深度学习异军突起。
它与 机器学习 两者在理论结构上是一致的,即:模型假设、评价函数和优化算法,其根本差别在于假设的复杂度。
3.1 .神经网络的基本概念
人工神经网络包括多个神经网络层,如:卷积层、全连接层、LSTM等,每一层又包括很多神经元,
超过三层的非线性神经网络都可以被称为 深度神经网络。 深度学习的模型可以视为是输入到输出的映射函数.
3.2 深度学习改变了 AI应用的研发模式
3.2.1 实现了 端到端的学习
数据充足的情况下,不需要专门做特征工程,将原始的特征输入模型中,模型可同时完成特征提取和分类任务
3.2.2 实现了深度学习框架标准化
以前的工程师需要储备大量数学和行业知识 ,建造模型及其个性化,
而今,“深度学习工程师”进入了工业化大生产时代,只要掌握深度学习必要但少量的理论知识,掌
握Python编程,即可在深度学习框架上实现非常有效的模型,甚至与该领域最领先的模型不相上下。