leetcode 209. 长度最小的子数组
题目描述:
给定一个含有 n 个正整数的数组和一个正整数 target 。
找出该数组中满足其和 ≥ target 的长度最小的连续子数组 [numsl, numsl+1, …, numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。
示例 1:
输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。
示例 2:
输入:target = 4, nums = [1,4,4]
输出:1
示例 3:
输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0
解题分析:
方法一:暴力解法
利用两个 for 循环,开始枚举数组, i 作为开始下标,j 作为终值下标,使得从 nums[i] 到 nums[j] 的和大于或等于 s,并更新子数组的最小长度。
时间复杂度:O(n^2)。
public:
int minSubArrayLen(int s, vector<int>& nums) {
int n = nums.size();
int res = INT_MAX;
for (int i = 0; i < n; i++) {
int sum = 0;
for (int j = i; j < n; j++) {
sum += nums[j];
if (sum >= s) {
// 子数组和超过了s,更新res
res = min(res, j - i + 1);
break;//符合条件就break
}
}
}
return res == INT_MAX ? 0 : ans;
}
};
方法二:滑动窗口
采取滑动窗口的方法,即根据它们的和的值来不断调整子数组的起始位置和终止位置,从而动态的改变滑动窗口的大小,最后找出最小的连续数组。滑动窗口其实是双指针的一种,首先固定住左指针,移动右指针,记录它们的和,直至其大于等于 target ;然后移动左指针,收缩窗口,直到和小于 target 再移动右指针,并更新区间。
时间复杂度:O(n)。
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int res = INT_MAX;
int sum = 0;
for(int i = 0, j = 0; i < nums.size(); i++)
{
sum += nums[i]; //向右扩展窗口
while(sum - nums[j] >= target) sum -= nums[j++]; //收缩窗口
if(sum >= target) res = min(res, i - j + 1); //区间更新
}
return res == INT_MAX ? 0 : res;
}
};
方法三:前缀和+二分法
使用前缀和和二分法,首先需要额外创建一个数组 sum 用于存储数组 nums 的前缀和,其中 sum[i] 表示从 nums[0] 到 nums[i−1] 的元素和。得到前缀和之后,下标 i 作为起始位置,利用二分法使得 sum[mid+1]−sum[i] ≥ s,并更新子数组的最小长度。
时间复杂度: O(nlogn)。
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int n = nums.size();
//数组sum 用于存储数组 nums 的前缀和,其中sum[i] 表示从nums[0] 到 nums[i−1] 的元素和。
vector<int> sum(n + 1, 0);//定义了一个大小为n+1的数组,都赋值为0
for (int i = 0; i < n; i ++)
sum[i+1] = sum[i] + nums[i];
int res = INT_MAX;
//二分
for (int i = 0; i < n; i ++)
{
int l = 0;
int r = n;
while (l < r)
{
int mid = (l + r) / 2;
if (sum[mid + 1] - sum[i] >= target)
r = mid;
else
l = mid + 1;
}
if (r < n)
res = min(res, r - i + 1);
}
return res == INT_MAX ? 0 : res;
}
};