1.导包(安装好tensorflow2)
import tensorflow as tf
from matplotlib import pyplot as plt
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, SimpleRNN
from sklearn.model_selection import train_test_split
import pandas as pd
2.设置时间步和用于存储损失和未来预测的数据列表
time_step = 7
loss_metrics_data = []
future_predictions_data = []
3.从序列数据中提取输入特征和目标
def extract_data(data, time_step):
X = []
y = []
for i in range(len(data) - time_step):
X.append([a for a in data[i:i + time_step]])
y.append(data[i + time_step])
X = np.array(X)
X = X.reshape(X.shape[0], X.shape[1], 1)
return X, y
4.读取数据
df = pd.read_csv("单品编号_售价_销量_品种(完整时间)(异常值处理).csv")