[深度学习项目] - 时间序列预测 (5)[待补充]

基于RNN的时序预测

基于LSTM的时序预测:
输入数据时 输入的 y t y_t yt x t + 1 x_{t+1} xt+1之间存在一个时间差。
在这里插入图片描述
DeepAR 和 MQRNN 都可以实现时序预测,而MQRNN基于 encoder-decoder架构。

基于CNN的时序预测

WaveNet可以实现时序预测:
在这里插入图片描述

经验

不同颗粒度

周别/月别

周别/月别 一般都存在 以年为单位的周期性。

历史数据比较短,使用简单的ETS,arima算法
数据较长,而且时间序列较少,推荐Prophet(单条预测)
数据较长,而且时间序列较多,推荐 机器学习,深度学习(批量预测)【包含 近期的数据 和 上一周期相同位置的数据】

天别

周期性: 双重周期: 周为单位,年为单位

Prophet, 机器学习,深度学习

分钟,小时别

sub daily data
三重周期性: 天 ,周,年 三重周期

如果对于小时别预测精度不高,但是对于日别,周别的预测精度更高,可以先考虑天别,再按比例简单拆分到天。

保证预测结果在设定范围内

保证结果 是整数 ; 结果大于0; 在一定区间范围内

  1. 整数: 四舍五入 / 深度学习:负二项分布;泊松分布
  2. 结果大于0: clip设置; 先预测z = log(y), 转化为: y=exp(z) ; 深度学习中将输出层激活函数设置为ReLU
  3. 区间范围内: clip; 先预测 z = l o g ( y − a b − y ) z=log(\frac{y-a}{b-y}) z=log(byya),再预测 y = ( b − a ) e z 1 + e z + a y=\frac{(b-a)e^z}{1+e^z}+a y=1+ez(ba)ez+a ;深度学习中 使用 sigmoid作为激活函数, 设置 比例项 和 偏置项。

异常值,缺失值处理

识别异常值
  1. 3 σ 3 \sigma 3σ方法: 只适用于 没有外部变量影响,周期性波动较弱的时间序列
  2. STL分解, 用于没有外部变量影响的时间序列
  3. 使用数据训练模型,使用模型拟合 训练集,将误差过大的数字设置为 异常值。
处理
  1. 直接删除,针对于Prophet, 机器学习算法
  2. 均值替代: 没有外部变量影响,季节性波动较弱的时间序列
  3. 使用Prophet进行拟合,填充异常值,缺失值
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值