数字图像处理课程实习——图像的线性变换与直方图变换

这篇博客记录了作者在学习数字图像处理课程中的实习经验,主要内容包括图像的灰度线性变换和直方图均衡化。通过实践,作者掌握了图像增强的方法、灰度直方图的计算以及直方图均衡化的实现。实验中遇到的问题,如正确显示图像的技巧(使用plt.imshow()与plt.show()组合),以及matplotlib.pyplot库的使用等,也进行了分享。
摘要由CSDN通过智能技术生成

         本人为测绘相关专业,此文为学习课程数字图像处理所写的实习作业部分内容。想着写了也就写了,不如发出来记录以下,说不定自己以后会用到的时候能来看看。当然大家能够从中学到或借鉴到什么就更好啦。

        本次实验的目标主要是为了深化对图像增强的目的及意义的理解,巩固所学理论知识,掌握直接灰 度变换的图像增强方法,掌握灰度直方图的概念及其计算方法,熟练掌握直方图均衡化的计算过程,学会分析图像直方图。

        本次实验主要完成了对图像进行灰度线性变换并显示,对图像进行直方图均衡化并显示,并将原图直方图、线性变换后的直方图、均衡化后图像的直方图显示出来并进行对比。

下为代码部分:
import cv2
import numpy as np
import matplotlib.pyplot as plt

#线性变换增强图像的函数
def linear_transform(img, low_in=0, high_in=1, low_out=0, high_out=1):
    #参数分别为输入图像,输入图像的归一化后的灰度级最低值与最高值,输出图像的归一化后的灰度级最低值与最高值
    #用assert函数来检验灰度级是否正常,不正常则报错
    assert high_in >= 0 and high_in <= 1 and low_in >= 0 and low_in <= 1
    assert high_out >= 0 and high_out <= 1 and low_out >= 0 and low_out <= 1
    #图像灰度级归一化
    img = img / 255.0
    #创造一个与输入图像大小相同的矩阵,且各元素均为0
    out = np.zeros_like(img)
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值