数字图像处理day_4 灰度变换与空间滤波-1

一. 一些基本灰度变换

    1. 线性变换

        s=T(r)=kr+b

  •         k=1,b=0时,输入输出相同
  •         k=1,b!=0时,所有像素灰度值上移或下移
  •         k为负值,暗区域变亮,亮区域变暗(当k=-1,图像求反,s=L-1-r)

    (1)分段线性灰度变换:将感兴趣灰度范围扩展,相对抑制不感兴趣灰度范围

     (2)灰度级分层(灰度分割)

    (3)比特平面分层(位图分割)

        图像中的像素值由8位表示,其中该图像中所有像素中固定的每个位可以看做一个平面,即位面,每个平面都是一个二值图像,从而可以分析每一位在图像中的重要。

        一般高4位比较重要。

    2. 对数和反对数变换:丰富细节

        s=clog(1+r),其中,c是使变换前后灰度范围相同。

        对数变换将输入中范围较窄的低灰度值映射出输出较宽范围的灰度值,可以用于扩展图像中的暗像素

        反对数变换将输入中范围较窄的高灰度值映射出输出较宽范围的灰度值,可以用于扩展图像中的亮像素

    3. 幂次变换(伽马变换):伽马校正

        s=cr^{\gamma }

  • \gamma<1,拉伸低灰度值
  • \gamma>1,拉伸高灰度值

二. 直方图处理

    基本原理:设r代表图像中像素的灰度值,做归一化处理后,r从[0, 255]被限定到[0, 1]内,r=0代表黑,r=1代表白。对于一幅给定的图像,每一个像素取得[0, 1]区间内的灰度值是随机的,也就是说,r是一个随机变量,因此,可以用概率密度函数P_{r}(r)来表示原始图像灰度发布。

        P_{r}(r_{k})=\frac{n_{k}}{N},    N为像素总数,r_{k}为第k个灰度级,n_{k}为第k级灰度的像素个数

    应用:

  • 判断图像量化是否恰当:一般来说,数字化获取的图像应该利用全部可能灰度级[0, 255]
  • 选择图像分割阈值:使用轮廓线确定物体边界的方法被称为阈值化,对物体与背景有较强对比的景物的分割特别有用。

    优缺点:

  • 只能反映灰度分布情况,不能反映位置
  • 一幅图像对应唯一灰度直方图,反之不成立。不同图像可能对应相同的灰度直方图。
  • 直方图的可叠加性。由于直方图是对具有相同灰度值的像素统计得到,因此,一幅图像各子区域的直方图之和等于全图直方图。

    直方图的修正:

        (1)归一化

            对f(x, y),其灰度范围是f_{min}\leq f(x, y)\leq f_{max},将其灰度范围转换到[0, 1]区间归一化

            r=\frac{f(x, y)-f_{min}}{f_{max}-f_{min}}

            归一化之后的图像对光照有一定的鲁棒性。

        (2)均衡化:加大对比度,但均衡后灰度级可能减少,造成细节损失

            通过变换函数T,将原图像直方图修正为均匀的直方图。为了使变换后的灰度仍保持从黑到白的单一变化顺序,且变换范围与原先一致,以避免整体变亮或变暗,必须满足以下两个条件:

  • 变换函数T(r)在[0,1]内是单值单增函数
  • 对于0\leq r\leq 1,有0\leq T(r)\leq 1

           p_{r}(r)dr=p_{s}(s)ds

            均衡前后像素个数不变,仅改变灰度值

            假定p_{s}=1, s\in [0, 1], 则ds=p_{r}(r)dr, s=T(r)=\int_{0}^{r}p_{r}(r)dr

            若考虑灰度级数为L,s=T(r)=(L-1)\int_{0}^{r}p_{r}(r)dr

            对于离散函数,s=T(r_{k})=(L-1)\sum_{i=0}^{k}p_{r}(r_{i})=\frac{L-1}{N}\sum_{i=0}^{k}n_{i}

        (3)直方图规定化

            对于连续函数:

  • s=T(r)=(L-1)\int_{0}^{r}p_{r}(r)dr
  • v=G(z)=(L-1)\int_{0}^{z}p_{z}(z)dz
  • 由于v,s有相同的分布,逐一取v=s,可求出与r对应的z=G^{-1}(s)

            对于离散函数:

  • s_{k}=T(r_{k})=(L-1)\sum_{i=0}^{k}p_{r}(r_{i})=\frac{L-1}{N}\sum_{i=0}^{k}n_{i}
  • v_{q}=G(z_{q})=(L-1)\sum_{j=0}^{q}p_{z}(z_{j})=\frac{L-1}{N}\sum_{j=0}^{q}n_{j}
  • 由于v,s有相同的分布,逐一取v=s,可求出与r对应的z_{_{q}}=G^{-1}(s_{k})​​​​​​​​​​​​​​
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值