NNDL 作业5 第四章课后题

习题4-1对于一个神经元sigama(wTx+b),并使用梯度下降优化参数w时,如果输入x恒大于0,其收敛速度会比零均值化的输入更慢

        首先明确,梯度下降用于优化参数,目的是为了最小化或最大化一个损失函数,从而使模型能够更好地拟合训练数据,提高其性能。而零均值化是对数据进行处理,是为了消除由于量纲不同、自身变异或者数值相差较大所引起的误差。

        我们要探究的问题是:对于一个神经元sg(wTx+b),当输入x恒大于0时,使用梯度下降优化参数w,其收敛速度会怎么样?比起零均值化的输入而言,收敛速度又是怎样?
首先,我们适当回顾一下梯度下降优化算法和它如何作用于神经网络。

        梯度下降是一种优化算法,用于找到函数的最小值。在神经网络中,我们通常使用梯度下降算法来优化网络的参数,如权重w和偏置b。在每次迭代中,梯度下降会按照函数梯度的反方向更新参数,以逐渐接近函数的最低点。当我们说一个优化算法的收敛速度,我们指的是该算法找到最优解的速度。

        现在回到我们的问题,当输入x恒大于0时,这意味着在每次更新参数时,梯度的方向都与更新方向一致。,这通常意味着优化算法的收敛速度会更快,因为每次更新都朝着正确的方向进行。

        而零均值化是一种数据预处理方法,它通过将数据集的均值变为0,从而消除数据集中的偏差,使得梯度下降算法更加稳定和收敛更快。

Explain:当输入x恒大于0时,梯度下降优化参数w的收敛速度可能会比零均值化的输入更慢。

这是因为当输入x恒大于0时,梯度下降算法的更新方向与数据集的偏差方向一致,这可能导致算法在优化过程中偏离正确的方向,从而减慢收敛速度。

而零均值化是一种数据预处理方法,它通过将数据集的均值变为0,从而消除数据集中的偏差,使得梯度下降算法更加稳定和收敛更快。

习题4-5如果限制一个神经网络的总神经元数量(不考虑输入层)为N十1,输入层大小为M。,输出层大小为1,隐藏层的层数为L,每个隐藏层的神经元数量为N/L,试分析参数数量和隐藏层层数L的关系。

要分析参数数量和隐藏层层数L的关系,首先来计算一下神经网络的参数数量

一个隐藏层的神经元数量为N/L,输入层到隐藏层的连接权重数量为 M * (N/L) 个。

同时,每个隐藏层的神经元还有一个偏置项,所以每个隐藏层的参数数量为 (N/L) + 1。

接下来,从第一个隐藏层到最后一个隐藏层都需要连接权重,所以隐藏层之间的连接权重数量为 (L-1) * ((N/L) * (N/L))。

同样的,每个隐藏层还有一个偏置项,所以隐藏层之间的参数数量为 (L-1) * ((N/L) + 1)。

最后,从最后一个隐藏层到输出层的连接权重数量为 (N/L) * 1,输出层的偏置项数量为 1。

因此,神经网络的总参数数量为:

M * (N/L) + (N/L) + 1 + (L-1) * ((N/L) * (N/L)) + (L-1) * ((N/L) + 1) + (N/L) + 1

化简计算可得:

(N * M) + (N/L) * (N/L) * (L-1) + L

可以看出,参数数量和隐藏层层数L的关系是非线性的。

当隐藏层层数L增加时,隐藏层之间的连接权重数量和隐藏层之间的参数数量都会增加,从而导致总参数数量增加。但是随着隐藏层层数的增加,每个隐藏层的神经元数量N/L会减少,所以输入层到隐藏层的连接权重数量和每个隐藏层的参数数量会减少。

总的来说,参数数量和隐藏层层数L之间的关系因各个参数的计算公式不同而变化,没有简单的线性关系。但可以肯定的是,隐藏层层数L的增加会增加神经网络的参数数量

习题4-7为什么在神经网络模型的结构化风险函数中不对偏置b进行正则化?

        在神经网络模型的结构化风险函数中,通常会对权重w进行正则化,但不会对偏置b进行正则化。这是因为偏置b的作用是调整神经元的激活阈值,与权重w的作用不同。

        在神经网络中,权重w是连接两个神经元的强度,它可以控制输入信号的放大或缩小。正则化是一种用于防止过拟合的技术,通过对权重w进行改变,使得模型在训练过程中更加关注那些被数据支持的特征,而忽略那些不被支持的特征(抓主要矛盾)。

        偏置b的作用是调整神经元的激活阈值,它可以使神经元更加容易或更加难以被激活。在训练神经网络时,偏置b通常会被更新以使得神经元能够更好地适应数据。然而,对偏置b进行正则化可能会影响神经元的激活能力,导致模型的性能下降。简单来讲,b就是一个临阵磨枪的角色,需要就磨一磨,不需要就吃灰,和w这种接受正规调教的不可同日而语。因此,在神经网络模型的结构化风险函数中,通常只对权重w进行正则化,而不对偏置b进行正则化。

        emmm,我们举个栗子

        偏置项b可以被视为沙拉(w)中的醋。对于某些人来说,添加一些醋可以增加沙拉的口感和风味。然而,对于其他人来说,醋可能会使沙拉的味道变得过于刺激,甚至无法接受,如果你不吃醋,你可以不费力去搞醋,但是不能说搞沙拉(w)的力气(正则化)都省了。类似地,在神经网络模型中,有些情况下偏置项b可以有助于改善模型的性能,但有些情况下它可能对模型的性能没有太大影响,甚至可能会干扰模型的训练过程。

习题4-8为什么在用反向传播算法进行参数学习时要采用随机参数初始化的方式而不是直接令W=0.b=0?

在用反向传播算法进行参数学习时,采用随机参数初始化的方式而不是直接令W=0、b=0,主要有以下几个原因:

  1. 避免局部最优解:在神经网络的训练过程中,优化算法可能会陷入局部最优解,而随机初始化参数可以帮助算法跳出局部最优解。这是因为随机初始化会在不同的参数空间中搜索最优解,增加了找到全局最优解的概率。

  2. 提高模型性能:随机初始化参数可以使得神经网络模型的初始表现与随机猜测的表现不同,从而提高了模型的性能。如果所有参数都初始化为0,那么神经网络的初始表现将与随机猜测的表现相同,这不利于提高模型的性能。

  3. 增加训练速度:随机初始化参数可以使神经网络的训练速度更快。这是因为随机初始化的参数分布与数据分布可能更加接近,从而使得梯度下降算法更快地收敛。

综上所述,采用随机参数初始化的方式而不是直接令W=0、b=0,可以避免局部最优解、提高模型性能、增加训练速度。

我来用比喻来解释为什么在用反向传播算法进行参数学习时要采用随机参数初始化的方式而不是直接令W=0.b=0。

以上是GPT给大家的答案,如果不明白就多读读多理解,理解了就明白了,但是我们还是举个粒子

        想象一下你是一个探险家,现在你站在一个巨大的迷宫的入口,你的目标是找到迷宫的出口。这个迷宫就像是一个神经网络,而你就是一个参数。你的决定是你要以何种方式开始你的探险。

        如果你选择直接令W=0.b=0,那么你就相当于站在迷宫的入口,没有任何的线索或方向,你希望直接找到迷宫的出口,而不经过任何的努力和探索。这种方法的问题在于,你可能会陷入局部最优解,就像是在迷宫中徘徊,前面虽然有路走,但无法找到真正的出口。

        相反,如果你选择随机参数初始化的方式,那么你就相当于在迷宫的入口随机选择一个方向开始探险。这个方向可能是一条死路,也可能是一条通往出口的路径。但是,至少你有了一个方向和目标,你开始了你的探险旅程。这就像是在说,你希望通过努力和探索,随机尝试不同的路径,找到一条通往迷宫出口的最佳路径。

        通过随机参数初始化的方式,你可以增加找到全局最优解的概率(也就是找到迷宫的出口),提高模型性能(更准确地找到出口),并增加训练速度(更快地找到出口)。这就好像是在探险过程中,随机选择一个起始方向可以让你更快地找到出口,因为你不需要从入口开始一步步地探索整个迷宫。相反,你可以直接从一个相对较近的位置开始探索,这样就可以更快地到达出口。

习题4-9梯度消失问题是否可以通过增加学习率来缓解?

梯度消失问题不能通过增加学习率来缓解

        梯度消失问题主要是由于在深层神经网络中,激活函数如sigmoid和tanh的导数在输入非常大或非常小的情况下,会趋于0。这导致在反向传播时,梯度信息在前几层传递过程中可能会变得非常小,从而使得参数更新变得困难。

        增加学习率可以加快参数的更新速度,但并不能解决梯度消失的问题。实际上,增大学习率只能在一定程度上减缓梯度消失这一问题,但这样做可能会带来其他问题,如参数容易跳过最优值点,导致参数优化时无法收敛。

        这里当一下小黑子举一个鲜活的荔枝,这就像是,你进入了国家队,你天天去练习踢足球,你的球技(学习率)确实上去了,但是并没有什么用,你很难进世界杯(依然梯度消失),目前最多凭你一人之力带着球队靠近世界杯一点(减缓梯度消失),但是另一个问题就来了,平时处于沙特阿拉伯下风,这次爆冷,搞突然袭击,那买沙特的人就该批评你不收敛了(虽然但是还是希望接着爆)。

        因此,针对梯度消失问题,我们需要寻找其他的解决方案,例如使用更合适的激活函数。

        

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值