皮肤纹理的图像处理分析

文章介绍了对皮肤纹理进行定量分析的方法,特别是利用统计和纹理分析来评估皮肤的粗糙度和各向异性。通过相干长度分析,可以识别图像中的纹理特征和可能的缺陷,如皱纹或颜色变化。这种方法对于皮肤科的计算机辅助诊断和皮肤老化研究具有潜在的应用价值。
摘要由CSDN通过智能技术生成

摘要:皮肤的颜色和粗糙程度在视觉上是不同的。当图像处理涉及皮肤分析时,使用纹理特征定量评估这种差异是很重要的。在本文中,我们讨论了一种基于统计方法的纹理分析和测量模式识别。晶粒度和各向异性用适当的图表进行评估。还讨论了确定图案缺陷存在的可能性。

关键词:二维纹理;皮肤纹理;纹理函数;缺陷定位

1.介绍

人类皮肤纹理的定量表征是最近图像处理所涉及的任务之一。纹理分析的这个问题有两个有趣之处。除了在计算机图形学[1]中对皮肤进行逼真渲染的计算建模外,我们还必须考虑将纹理分析应用于皮肤科计算机辅助诊断的可能性[2,3]。

皮肤纹理是皮肤表面光滑的外观。对于这种质地的特征,许多因素都在发生,例如饮食和水合作用、胶原蛋白和激素的量,当然还有皮肤护理。此外,随着年龄的增长,皮肤逐渐衰退。随着皮肤年龄的增长,它变得更薄,更容易受损,并出现皱纹。这种恶化还伴随着皮肤颜色的变暗,因为皮肤最顶端的细胞层过度吸收了天然色素黑色素。皮肤纹理也取决于其身体位置。在图像处理的情况下,我们必须考虑纹理外观随着图像记录参数的变化而变化的事实,即相机、照明和视角,这是任何真实表面都常见的问题。

对皮肤特征进行定量评估的任务相当复杂,因为在所有情况下,图像分析都必须应用于具有不规则非周期性图案的表面。

对于皮肤纹理,已经提出了基于小波[8]、自适应分割[9]和遗传图像分析[10]的方法。参考文献[11]和[12]通过处理用电容装置获得的皮肤轮廓来研究皮肤的老化,从而对皮肤形貌进行了表征。在这里,我们建议应用皮肤表征,这是以前用于研究向列型液晶中纹理转变的图像处理程序[13-14]。这种处理适用于具有光滑、几乎不规则纹理的图像,如在某些向列型液晶单元的显微镜研究中观察到的图像。该处理基于相干长度分析,在下一节中详细描述。

2.图像分析

对于图像帧中任意点P(x,y)处的每个像素,我们将其与0到255范围内的灰度b相关联:b(x,y)是表示图像强度(亮度)分布的二维函数。从给出像素灰度的函数b(x,y)开始,可以执行以下计算。首先,确定像素色调的平均强度:

 

其中lx、ly是图像帧的x和y矩形范围。更一般地,图像的k阶统计矩以以下方式定义:

 通过这种表征,我们能够定义整个图像帧的矩的平均值。然后根据这些矩给出像素色调的分布。结果证明,音调色散是通过k=2的矩来评估的。

所有积分都可以在整个图像或窗口上计算。在对图像进行窗口化的情况下,矩Mo和Mk允许找到对象的位置和形状,因为分布可以针对每个特定窗口而改变。在乍一看不存在特定物体的图像中,我们可以对整个图像使用由方程(1)和(2)定义的矩Mo和Mk的相同值,假设图像由单个强度分布表征。然而,为了确定图像是否表现出不规则的域或局部缺陷,在固定的可接受限度内,例如50%,估计强度标准偏差与整个图像帧上的平均强度值之间的质量比是有用的。

让我们强调一个事实,即一个域可以用强度分布来描述,强度分布可以与其他域的强度分布或背景分布本质上不同。在这种情况下,从仅一个分布就足以描述整个图像帧的观点出发是误导性的。相反,在这种情况下,有必要在窗口的网格中共享图像,其中在每个窗口内,质量比低于接受极限。极限值的选择不会影响该方法的灵敏度,因为与细分类别的统计变量范围相关的选择也不会影响样本的位置和分散指数。

然而,有必要检查均匀性假设是否真的得到了验证,以及图像框中是否显示了首选方向(各向同性假设)。我们引入了表征纹理尺寸的典型长度,这对近晶相和向列相的表征非常有用[13,14]。

我们不是通过测量均匀性,而是通过评估直方图的强度差熵与距图像帧的一点的距离(例如参见[15]),或者通过“行程统计”[16,17]计算空间组织,来计算以以下方式定义的一组相干长度。从图b(x,y)的任意点P(x,y)开始,沿着几个径向方向,我们计算Moi(x,y)和Mki(x,y)矩的值,即:

其中,指数i在径向上,r是与P的径向距离,θi是i方向与y轴形成的角度(参考系见图1)。长度lo,i和lk,i是径向距离(从P),在该径向距离处,在所选方向上的力矩Moi(x,y)和Mki(x,y)的值在阈值水平t内饱和到图像平均力矩Mo和Mk。这是定义图像帧中点P的局部“相干长度”lo,i(x,y)和lk,i(x,y)的方法。阈值t的选择取决于所研究的问题。

在函数lo,i(x,y)和lk,i(x,y)的计算中,不涉及图像帧边界附近的像素,因为在这种情况下,不可能估计所有方向上的相干长度(边界效应)。相反,在标准图像处理技术[18]中,最初存在或通过复制帧人为引入的图像的周期性被用来克服边界问题。让我们强调一个事实,即力矩Moi(x,y)和Mki(x,y)不是在图像帧中的窗口上计算的,而是在特定方向上计算的:因此,该方法不同于标准统计方法,允许以自然的方式考虑纹理识别问题中的各向异性。在我们的分析中,我们将使用图1中的32个方向。 

图1:用于计算沿i方向的平均值的参考系统。在图中,我们显示了在相干长度图的评估中使用的32个方向。

 实际上,我们可以寻找向量lo,i(x,y)或lk,i(x,y)的异常行为,作为图像帧中对应于给定点P(x,y)的位置存在缺陷的信号,对于每个特定的i方向:

[注1:相干长度是光学和凝聚态物理学中一个众所周知的概念。在光学中,它是从相干源到电磁波保持特定相干度的点的传播距离。在凝聚态物理学中,它是维持有序的距离。例如,当我们有一个长程原子或分子秩序时,我们可以判断出我们在一种物质状态下有相干性。相干长度明显大于分子大小。通常,相干长度是指发生长程有序的材料中有序畴的大小,例如液晶中的有序畴。术语相干长度也用于表征当施加电场或磁场时在固体/液晶界面形成的畸变过渡层中的平均分子取向的分布的尺度。]

如果图像帧是严格均匀的,则这样的平均长度应该与针对所有图像点测量的实际局部长度一致。另一方面,如果图像帧是完全不均匀的,则局部长度将非常分散在它们的平均值周围。当图像帧在窗口中共享时,也会发生同样的情况,每个窗口都具有不同的强度分布。如果图像可以被认为在合理的色散范围内仅由一个分布表征,则可以在整个图像帧上平均相干长度。长度Lo,i表示沿着i方向从一般点P(x,y)到图像强度实际达到平均值的距离:这意味着距离取决于阈值水平。

 图2:Brodatz相册中两张蛇皮的连贯长度图(右侧)。内部曲线对应于0.5\sqrt{M2/M0}的阈值,外部曲线对应于0.2\sqrt{M2/M0}。轴上的数字对应于像素数。请注意,该图能够指示纹理各向异性。对于所选择的阈值,图表是具有表征整个图像帧的相同特征的最小区域的边界。

在图2中,报告了Brodatz相册中两张蛇皮图像的平均值Lo,i。结果是图1中32个方向上的Lo,i的示意图。我们可以把这个图定义为“相干长度图”。事实上,该图显示了通过固定两个不同的阈值而获得的两个图。为了获得内部图,我们使用与比率\sqrt{M2/M0}的50%相对应的阈值。外部图表是用相同比例的20%获得的。这些图揭示了图像纹理中的优先方向,即纹理的各向异性。

在本文中,我们只考虑Lo,i,因为这给出了最直观的结果。Lo,i长度的图表示关于一般点P(x,y)的最小区域,在该区域上,当评估像素强度的平均值时,我们获得固定阈值水平内的值Mo。该图表示图像单位区域的边界,其中包含整个图像的典型特征,我们可以很容易地将图与蛇鳞进行比较。事实上,单位面积表现为晶格中的原始晶胞(晶格中晶胞的描述见参考文献19)。我们也可以将该区域或相干长度图视为晶粒尺寸的度量,然后评估图像纹理的粗糙度。

图像纹理中的缺陷可以被认为是图像帧中具有不同形状的任何物体,例如,不同于单元的形状,或者不同的单元平均色调,等等。

3.皮肤纹理分析与讨论

蛇皮的情况给出了立即回忆晶格中晶胞性质的图表。这是因为纹理是相当几何的。当然,人类皮肤的特征是不同的,但正如我们从其在液晶显微镜研究中的使用中观察到的[13,14],正是在几乎均匀的图像的情况下,傅立叶分析几乎不活跃,相干长度是有用的。

我们用相干长度(Lo,i)图分析了人形纹理的图像,结果如图3所示,位于图的中间。在图的下部,显示了皮革纹理和相应的分析。内部和外部曲线具有阈值,这些阈值用于获得图2的图表。这两张图的形状没有实质性的变化。面积正在发生变化:这是因为要实现较低的阈值,需要更大的面积。

在图的右侧,我们看到了缺陷的检测:用红色标记的点被视为“缺陷”,而用绿色标记的像素是正常的。这不是在红绿图的原点处的分割过程,而是涉及相干长度lo,i(x,y)的局部行为的标准。在我们正在讨论的情况下,即几乎齐次图像帧的情况,我们合理地假设点P(x,y)不属于缺陷,如果平均局部值定义为:

包括在两个极值长度Lo,min和Lo,max之间,其中Lo,min是方程(5)的32个平均值中的最小值,Lo,max是最大值。显然,对于几乎各向同性的图像帧,两个极值Lo,min和Lo,max接近在一起。

在用红色标记的点(即缺陷)处,平均局部相干长度lo(x,y)不包括在区间[lo,min,lo,max]中。相反,不属于缺陷的点用绿色标记。我们使用红色和绿色的半色调来查看这个缺陷图中的原始纹理。

 对于商业软件,识别缺陷的常见程序基于灰度阈值[15]:这意味着检查像素强度在固定公差内是否与特定选择的灰度一致的程序。该处理被称为“通过阈值进行图像分割”,并根据使用的阈值生成在两个或多个区域中分割的图像。这种技术不是调查像素的邻域,因此无法确定它是否真的属于缺陷。通过本文讨论的分析,缺陷检测是将局部单元的局部相干长度lo,i(x,y)与相干长度lo,i图和全局单元进行比较,如图3中间所示。然后,我们将像素邻域的行为与所有像素邻域的平均行为进行比较。

图3:在图的中间,我们可以看到两个类人皮肤纹理和一个皮革纹理的相干长度图(下图)。内部和外部曲线具有阈值,如图2所示。在图的右侧,我们看到了“缺陷”的检测。用红色标记的点被视为“缺陷”(有关解释,请参阅文本)。让我们注意到,这不是一个分割阈值程序,因为它可以通过商业程序获得。

例如,在人类皮肤的情况下,缺陷可能是颜色较浅或较深的区域,或者是有皱纹的区域。在图3的上部,我们看到了一个几乎规则的纹理,有一个较暗的区域。相干长度图表明纹理是各向同性的,实际上我们没有褶皱。如前所述获得的缺陷图证明了较暗的区域。

图3显示了具有褶皱的纹理具有略微各向异性的晶胞,如相干长度图所示(见图中间)。忽略这种各向异性,缺陷检测的过程可以看到背景中具有不同强度的区域。可以制定一种程序来比较局部相干区域和全局相干区域的真实形状,但这是进一步研究的主题。皮革表面没有褶皱,然后表现为同一图中的上图。我们可以认为这种缺陷检测程序是皮革行业故障检测的一种很好的方法。

图4:可以在通过电容系统(参考文献11)获得的映射图上使用相干长度图评估。这些图的阈值如图2和图3所示。左上部分的图像显示了电容系统的地图。在图的下部分,我们看到了经过图像对比度归一化后的同一张图像。请注意,由于像素色调分布不同,因此图表不同。缺陷检测程序增强了这种差异(该程序与图3相同)。在上部,我们看到红色区域集中,重整化程序必须在改变像素色调分布时起作用。在较低的图像中,缺陷的数量大大减少。 

也可以获得从电容系统获得的映射的相干长度图(参见参考文献11)。在图4的上部,我们可以看到电容系统的映射。在下半部分,我们看到了图像对比度归一化后的相同图像:电容图像对不同的水合作用和汗液的存在很敏感,这会产生较暗的区域,然后需要重新归一化。

注意,相干长度图是不同的,因为像素色调分布不同。这种差异通过我们之前用于图3所示纹理的缺陷检测程序得到了证明。在图4的右上部分,我们看到红色区域集中在归一化过程必须更有力地改变像素色调分布的地方,以获得重新归一化的图像。因此,右下图像,即再恶性化图像的缺陷图,显示了少量的缺陷。

参考文献11的目的是开发一种表征皮肤形貌的设备,以测量皮肤轮廓和皱纹的存在。图像的重新规范化对于皮肤形貌的分割是必要的,以将其与皮肤老化相关联。在处理相机记录的图像的情况下,照明和视角很重要,类似的归一化程序也很有用。

我们对皮肤纹理的图像分析是基于对整个图像帧的全局灰度分布的评估,然后基于能够显示纹理各向异性的相干长度图。这些图表还能够估计纹理特征,如各向异性和粗糙度:然后这些图表可以充分描述皱纹的存在。根据所选择的灰度分布统计参数,可以提出几种缺陷检测方法。我们遵循了一个简单的程序,能够从背景中识别局部差异,但根据临床经验,可以很容易地采用更复杂的程序。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值