完全背包求方案数 以及求具体方案。

题目描述:

给定n种物品以及每种物品的体积,每种物品无穷多件,再给定一个背包体积m,请问从这n种物品里面选,恰好凑出体积为m的所有方案有多少种?

思路:

这是一个完全背包问题,可以使用动态规划来解决。
d p i dp_i dpi 表示凑出体积为 i i i 的方案数,则有状态转移方程:
d p i = ∑ j n d p i − v j dp_i =\sum\limits_{j}^ndp_{i−v_j} dpi=jndpivj

其中 v j v_j vj 表示第 j j j 种物品的体积。

边界条件为 d p 0 = 1 dp_0=1 dp0=1,因为背包体积为 0 0 0 时,不选任何物品即为一种方案。

最终答案即为 d p m dp_m dpm,表示凑出体积为 m m m 的方案数。

下面以一个样例来进行模拟解释:

假设给定物品体积数组为 v = [ 1 , 2 , 3 ] v = [1, 2, 3] v=[1,2,3],背包体积为 m = 5 m = 5 m=5,则可以得到如下的状态转移方程:

在这里插入图片描述

最终的答案为 d p 5 = 24 dp_5=24 dp5=24,表示凑出体积为 5 5 5 的方案数有 24 24 24 种。

#include <iostream>
#include <vector>
using namespace std;

int main() {
    int n, m;
    cin >> n >> m;
    vector<int> v(n+1);
    for (int i = 1; i <= n; ++i) {
        cin >> v[i];
    }
    vector<int> dp(m+1);
    dp[0] = 1; // 背包体积为0时,方案数为1
    for (int i = 1; i <= n; ++i) {
        for (int j = v[i]; j <= m; ++j) {
            dp[j] += dp[j - v[i]];
        }
    }
    cout << dp[m] << endl; // 输出恰好凑出体积为m的方案数
    return 0;
}

对于输入的n和m,我们定义一个长度为n+1的数组v,用来存储每种物品的体积。接下来定义一个长度为m+1的数组dp,dp[i]表示恰好凑出体积为i的方案数。

初始状态是当背包体积为0时,方案数为1,即dp[0] = 1。

接下来,我们对每种物品进行遍历。在每次遍历中,我们遍历dp数组,计算恰好凑出体积为j时的方案数。具体地,对于每种物品i,如果它的体积v[i]小于等于当前的体积j,那么我们可以选择将i放入背包中,此时方案数为dp[j - v[i]];也可以不选择将i放入背包中,此时方案数为dp[j]。那么,恰好凑出体积为j的方案数就是这两种情况的方案数之和,即dp[j] += dp[j - v[i]]。

最后,输出dp[m]即为恰好凑出体积为m的方案数。

拓展题目:

请问如果在问题的末尾,不求方案数,而是要你输出每种具体的方案,具体的方案为:选了哪几种物品,每种物品选了多少件呢?

思路:

要输出具体方案,需要对DP数组进行修改,记录方案数的dp数组改为记录方案的二维数组即可。设 d p [ i ] [ j ] dp[i][j] dp[i][j]表示前 i i i种物品,凑出体积为 j j j的方案数, g [ i ] [ j ] g[i][j] g[i][j]表示凑出体积为 j j j时第 i i i种物品选了多少个。

状态转移方程也需要做相应的修改:
在这里插入图片描述

当更新 d p [ i ] [ j ] dp[i][j] dp[i][j]时,如果选择了第 i i i种物品 k k k个,则 g [ i ] [ j ] = k g[i][j]=k g[i][j]=k,同时状态转移时也要记录 k k k,即:
在这里插入图片描述

最后根据 g g g数组逆推出具体的方案即可。代码如下:

#include <iostream>
#include <cstring>
using namespace std;

const int N = 15, M = 1e3 + 10;
int n, m;
int v[N]; // v[i]表示第i种物品的体积
int f[M]; // f[i]表示恰好凑出体积i的方案数
int g[M][N]; // g[i][j]表示凑出体积i时,选择了第j种物品的方案数

int main()
{
    cin >> n >> m;
    for (int i = 1; i <= n; i ++ ) cin >> v[i];

    f[0] = 1; // 初始化f[0]=1
    for (int i = 1; i <= n; i ++ )
        for (int j = v[i]; j <= m; j ++ ) {
            f[j] += f[j - v[i]];
            for (int k = 0; k < i; k ++ ) // 注意这里枚举k<i
                g[j][i] += g[j - v[i]][k]; // 转移时继承之前的方案数
            g[j][i] += f[j - v[i]]; // 选择了第i种物品
        }

    cout << f[m] << endl;
    for (int i = 1; i <= n; i ++ )
        for (int j = 0; j <= m; j ++ )
            if (g[j][i])
                cout << "choose " << i << " : " << g[j][i] << endl;

    return 0;
}

这里的主要改动在于增加了一个二维数组 g,它的含义和 f 类似,表示凑出体积为 j 的时候,选择了第 i 种物品的方案数。然后在转移的时候,我们枚举之前选择的物品 k,并将之前的方案数 g[j-v[i]][k] 继承过来,同时加上选择第 i 种物品时的方案数 f[j-v[i]]。最后,遍历一遍 g 数组,输出非零的方案数即可。

细节:对于f数组,不需要改成二维的吗?

在这个问题中,只需要统计方案数,不需要记录方案具体内容,所以可以用一维数组就可以实现。因为一维数组的下标表示的是体积,所以不需要记录每个物品的选择情况,只需要记录对应体积下的方案数即可。如果需要记录方案具体内容,则需要使用二维数组来表示。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值