自由空间损耗模型——弗里斯传输公式

自由空间中的损耗推导过程:

1、假设空间中存在一个无方向性的信号点源,对空辐射的能量会形成一个球面,若已知球的半径d,根据球面积公式可得:

        S = 4\pi d^2

      则球面上任意一点的能量可计算为:

        \frac{1}{S}=\frac{1}{4\pi d^{2}}

2、假设该点源的辐射能量为P_{o},则球面上的能量计算公式可写为:

        P_{o}/S=\frac{P_{o}}{4\pi d^{2}}

3、若该能量源在空间辐射是有方向性的,且在该点的增益为G_{t},球面上该点对应的能量为:

        P_{dot}=P_{o}\cdot G_{t}/S=\frac{P_{o}G_{t}}{4\pi d^{2}}

4、在该点处的接收天线,有效面积A_{e},对应的接收天线增益G_{r},已知波长为\lambda,它们之间的相互关系有:

        A_{e}=G_{r}\cdot \frac{\lambda ^{2}}{4\pi }

5、则对应的接收能量可以按下面的公式计算:

        P_{r}=A_{e}\cdot P_{dot}=\frac{P_{o}G_{t}G_{r}\lambda ^{2}}{\left ( 4\pi d \right )^{2}}

6、如果用分贝(dB)表示,上式简化为

        P_{r}=P_{o}+G_{t}+G_{r}+L\left ( dB \right )

        L\left ( dB \right )=10log\left ( \frac{\lambda }{4\pi d } \right )^{2}

7、L\left ( dB \right )即为自由空间损耗(弗里斯传输公式)

         L\left ( dB \right )=20log\left ( \frac{\lambda }{4\pi d} \right ) =20log\left ( \frac{c}{4\pi df} \right )=20log\left ( \frac{c}{4\pi } \right )-20log\left ( d \right )-20log\left ( f \right )

8、d单位km,f单位MHz,则上式可以化简为:

        L\left ( dB \right )=-32.45-20log\left ( d_{km} \right )-20log\left ( f_{MHz} \right )

自由空间的损耗理论公式为8所示;实际中还有多径干扰、阴影衰落、动态衰落、极化损失等。

弗里斯公式(Fresnel Formula),通常与光学和电磁波传播有关,在信息技术领域可能涉及信号处理、天线设计以及无线通信等场景。以下是关于该公式的详细介绍及其在IT领域的应用背景。 --- ### 弗里斯公式的定义及推导 弗里斯公式描述了光或其他电磁波穿过两种不同介质界面时反射率和透射率的变化规律。其核心在于计算入射角、折射率等因素对光线行为的影响。 - 反射系数和透射系数可以通过以下公式表示: $$ R_s = \left( \frac{n_1\cos\theta_i - n_2\cos\theta_t}{n_1\cos\theta_i + n_2\cos\theta_t} \right)^2,\quad T_s = \frac{2n_1\cos\theta_i}{n_1\cos\theta_i + n_2\cos\theta_t} $$ 其中,$R_s$ 和 $T_s$ 分别代表垂直极化方向上的反射率和透射率;$\theta_i$ 是入射角,$\theta_t$ 是折射角,而$n_1,n_2$ 则分别对应两介质的折射率。 对于平行偏振情况下的反射率 ($R_p$) 和透射率($T_p$),则有类似但略有不同的形式。 --- ### 在IT上下文中的具体应用场景 #### 天线工程中的应用 在无线电波传输过程中,了解边界条件如何影响能量分布至关重要。例如,当微波遇到地面或者建筑物表面时会发生不同程度的反射和吸收现象。利用弗里斯方程可以帮助工程师预测这些效应从而优化系统性能。 #### 光纤通讯技术里的角色扮演 光纤内部依赖全内反射原理来引导数据包快速移动。准确掌握材料参数之间的关系有助于提高制造精度并降低损耗水平。 #### 计算机图形渲染效果增强手段之一 现代GPU编程经常需要用到物理真实的光照模型模拟真实世界物体外观特性。此时引入菲涅尔项能够显著改善视觉质量使得虚拟环境更加逼真可信。 --- ### 示例代码实现 (Python) 下面给出一个简单的 Python 函数用于演示基本功能: ```python import numpy as np def fresnel_reflectance(n1, n2, theta): # Convert angle to radians if given in degrees. theta_rad = np.radians(theta) rs_num = n1 * np.cos(theta_rad) - n2 * np.sqrt(1 - ((n1/n2)**2)*(np.sin(theta_rad))**2) rs_denom = n1 * np.cos(theta_rad) + n2 * np.sqrt(1 - ((n1/n2)**2)*(np.sin(theta_rad))**2) rp_num = n2 * np.cos(theta_rad) - n1 * np.sqrt(1 - ((n1/n2)**2)*(np.sin(theta_rad))**2) rp_denom = n2 * np.cos(theta_rad) + n1 * np.sqrt(1 - ((n1/n2)**2)*(np.sin(theta_rad))**2) Rs = abs(rs_num / rs_denom)**2 Rp = abs(rp_num / rp_denom)**2 return (Rs+Rp)/2 # Example usage: refl = fresnel_reflectance(1.0, 1.5, 45) print(f"Reflectance at 45° is {refl:.4f}") ``` 此段脚本实现了给定两个介电常数以及角度值之后求解平均反射强度的功能。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值