自由空间损耗模型——弗里斯传输公式

自由空间中的损耗推导过程:

1、假设空间中存在一个无方向性的信号点源,对空辐射的能量会形成一个球面,若已知球的半径d,根据球面积公式可得:

        S = 4\pi d^2

      则球面上任意一点的能量可计算为:

        \frac{1}{S}=\frac{1}{4\pi d^{2}}

2、假设该点源的辐射能量为P_{o},则球面上的能量计算公式可写为:

        P_{o}/S=\frac{P_{o}}{4\pi d^{2}}

3、若该能量源在空间辐射是有方向性的,且在该点的增益为G_{t},球面上该点对应的能量为:

        P_{dot}=P_{o}\cdot G_{t}/S=\frac{P_{o}G_{t}}{4\pi d^{2}}

4、在该点处的接收天线,有效面积A_{e},对应的接收天线增益G_{r},已知波长为\lambda,它们之间的相互关系有:

        A_{e}=G_{r}\cdot \frac{\lambda ^{2}}{4\pi }

5、则对应的接收能量可以按下面的公式计算:

        P_{r}=A_{e}\cdot P_{dot}=\frac{P_{o}G_{t}G_{r}\lambda ^{2}}{\left ( 4\pi d \right )^{2}}

6、如果用分贝(dB)表示,上式简化为

        P_{r}=P_{o}+G_{t}+G_{r}+L\left ( dB \right )

        L\left ( dB \right )=10log\left ( \frac{\lambda }{4\pi d } \right )^{2}

7、L\left ( dB \right )即为自由空间损耗(弗里斯传输公式)

         L\left ( dB \right )=20log\left ( \frac{\lambda }{4\pi d} \right ) =20log\left ( \frac{c}{4\pi df} \right )=20log\left ( \frac{c}{4\pi } \right )-20log\left ( d \right )-20log\left ( f \right )

8、d单位km,f单位MHz,则上式可以化简为:

        L\left ( dB \right )=-32.45-20log\left ( d_{km} \right )-20log\left ( f_{MHz} \right )

自由空间的损耗理论公式为8所示;实际中还有多径干扰、阴影衰落、动态衰落、极化损失等。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值