1和最短路问题类似,但是多加了条件,有k次零代价通过路径的机会,求最短路
2问题可以利用dp来解决,设二维数组dis[i][j],第一个元素代表起点s所要到达i点,第二个元素代表已经用了j次零代价机会,转移方程如下:
设u与v有一条权值为w的路径
(1)当k>j时,也就是说还能用零代价机会,dis[v][j+1]=min(dis[v][j+1],dis[u][j]
(2)如果不使用零代价机会,dis[v][j]=min(dis[v][j],dis[u][j]+w)
3用dijsktra算法跑一遍即可,优先队列存储的元素比普通dijsktra多了一个cnt(用于记录使用了多少次零代价机会),其他基本类似
代码实现:
根据模板题:[JLOI2011] 飞行路线 - 洛谷
1数据存储
const int maxn=1e4+10;
const int inf=0x3f3f3f3f;
struct edge{
int to,w;
};
vector<edge>vv[maxn];//存储图
int dis[maxn][11];//记录s到i花了j次零代价机会的最小权值
bool vis[maxn][11];//表示s到i花了j次零代价机会的状态是否被访问过
int n,m,k;
inline void add(int u,int v,int w)
{
vv[u].push_back({v,w});
vv[v].push_back({u,w});
}
struct node{
int id,w,cnt;//cnt代表花了多少次零代价机会
friend bool operator<(const node&a,const node&b)
{
return a.w>b.w;
}
};
2dijsktra最短路
priority_queue<node>q;
void dij(int s)
{
for(int i=0;i<n;i++)
for(int j=0;j<=k;j++)//初始化
{
dis[i][j]=inf;
vis[i][j]=0;
}
dis[s][0]=0;
q.push({s,0,0});
while(!q.empty())
{
node p=q.top();
q.pop();
int u=p.id;
int now=p.cnt;
if(vis[u][now])
continue;
vis[u][now]=1;//该状态被访问过
for(int i=0;i<vv[u].size();i++)
{
int to=vv[u][i].to;
int w=vv[u][i].w;
if(k>now&&dis[to][now+1]>dis[u][now])//当前状态使用零代价机会
{
dis[to][now+1]=dis[u][now];
q.push({to,dis[to][now+1],now+1});
}
if(dis[to][now]>dis[u][now]+w)//不使用零代价机会
{
dis[to][now]=dis[u][now]+w;
q.push({to,dis[to][now],now});
}
}
}
}
3主函数
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n>>m>>k;
int s,t;
cin>>s>>t;
for(int i=1;i<=m;i++)
{
int u,v,w;
cin>>u>>v>>w;
add(u,v,w);
}
dij(s);
int ans=inf;
for(int i=0;i<=k;i++)//寻找答案
ans=min(ans,dis[t][i]);
cout<<ans<<'\n';
}
4完整代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e4+10;
const int inf=0x3f3f3f3f;
struct edge{
int to,w;
};
vector<edge>vv[maxn];//存储图
int dis[maxn][11];//记录s到i花了j次零代价机会的最小权值
bool vis[maxn][11];//表示s到i花了j次零代价机会的状态是否被访问过
int n,m,k;
inline void add(int u,int v,int w)
{
vv[u].push_back({v,w});
vv[v].push_back({u,w});
}
struct node{
int id,w,cnt;//cnt代表花了多少次零代价机会
friend bool operator<(const node&a,const node&b)
{
return a.w>b.w;
}
};
priority_queue<node>q;
void dij(int s)
{
for(int i=0;i<n;i++)
for(int j=0;j<=k;j++)//初始化
{
dis[i][j]=inf;
vis[i][j]=0;
}
dis[s][0]=0;
q.push({s,0,0});
while(!q.empty())
{
node p=q.top();
q.pop();
int u=p.id;
int now=p.cnt;
if(vis[u][now])
continue;
vis[u][now]=1;//该状态被访问过
for(int i=0;i<vv[u].size();i++)
{
int to=vv[u][i].to;
int w=vv[u][i].w;
if(k>now&&dis[to][now+1]>dis[u][now])//当前状态使用零代价机会
{
dis[to][now+1]=dis[u][now];
q.push({to,dis[to][now+1],now+1});
}
if(dis[to][now]>dis[u][now]+w)//不使用零代价机会
{
dis[to][now]=dis[u][now]+w;
q.push({to,dis[to][now],now});
}
}
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n>>m>>k;
int s,t;
cin>>s>>t;
for(int i=1;i<=m;i++)
{
int u,v,w;
cin>>u>>v>>w;
add(u,v,w);
}
dij(s);
int ans=inf;
for(int i=0;i<=k;i++)//寻找答案
ans=min(ans,dis[t][i]);
cout<<ans<<'\n';
}