分层图最短路学习笔记

这篇博客介绍了如何利用Dijkstra算法解决一类特殊的最短路问题,即在图中有多次零代价通过路径的机会。文章详细阐述了问题背景,提出使用动态规划的方法,通过二维数组记录从起点到各点的最短路径,并给出了转移方程。同时,博主给出了完整的C++代码实现,包括数据结构定义、Dijkstra算法的优化以及主函数。最后,代码演示了如何找到从起点到终点在使用不同次数零代价机会下的最短路径。
摘要由CSDN通过智能技术生成

1和最短路问题类似,但是多加了条件,有k次零代价通过路径的机会,求最短路

2问题可以利用dp来解决,设二维数组dis[i][j],第一个元素代表起点s所要到达i点,第二个元素代表已经用了j次零代价机会,转移方程如下:

设u与v有一条权值为w的路径

(1)当k>j时,也就是说还能用零代价机会,dis[v][j+1]=min(dis[v][j+1],dis[u][j]

(2)如果不使用零代价机会,dis[v][j]=min(dis[v][j],dis[u][j]+w)

3用dijsktra算法跑一遍即可,优先队列存储的元素比普通dijsktra多了一个cnt(用于记录使用了多少次零代价机会),其他基本类似

代码实现:

根据模板题:[JLOI2011] 飞行路线 - 洛谷

1数据存储

const int maxn=1e4+10;
const int inf=0x3f3f3f3f;
struct edge{
	int to,w;
};
vector<edge>vv[maxn];//存储图 
int dis[maxn][11];//记录s到i花了j次零代价机会的最小权值 
bool vis[maxn][11];//表示s到i花了j次零代价机会的状态是否被访问过 
int n,m,k;
inline void add(int u,int v,int w)
{
	vv[u].push_back({v,w});
	vv[v].push_back({u,w});
}
struct node{
	int id,w,cnt;//cnt代表花了多少次零代价机会 
	friend bool operator<(const node&a,const node&b)
	{
		return a.w>b.w; 
	}
};

2dijsktra最短路

priority_queue<node>q;
void dij(int s)
{
	for(int i=0;i<n;i++)
	for(int j=0;j<=k;j++)//初始化 
	{
	dis[i][j]=inf;
	vis[i][j]=0;	
	}
	dis[s][0]=0;
	q.push({s,0,0});
	while(!q.empty())
	{
		node p=q.top();
		q.pop();
		int u=p.id;
		int now=p.cnt;
		if(vis[u][now])
		continue;
		vis[u][now]=1;//该状态被访问过 
		for(int i=0;i<vv[u].size();i++)
		{
			int to=vv[u][i].to;
			int w=vv[u][i].w;
			if(k>now&&dis[to][now+1]>dis[u][now])//当前状态使用零代价机会 
			{
				dis[to][now+1]=dis[u][now];
				q.push({to,dis[to][now+1],now+1});
			}
			if(dis[to][now]>dis[u][now]+w)//不使用零代价机会 
			{
				dis[to][now]=dis[u][now]+w;
				q.push({to,dis[to][now],now});
			}
		}
	}
}

3主函数

int  main()
{
 	ios::sync_with_stdio(false);
 	cin.tie(0);
 	cin>>n>>m>>k;
 	int s,t;
 	cin>>s>>t;
 	for(int i=1;i<=m;i++)
 	{
 		int u,v,w;
 		cin>>u>>v>>w;
 		add(u,v,w);
	}
	dij(s);
	int ans=inf;
	for(int i=0;i<=k;i++)//寻找答案 
	ans=min(ans,dis[t][i]);
	cout<<ans<<'\n';
}

4完整代码

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e4+10;
const int inf=0x3f3f3f3f;
struct edge{
	int to,w;
};
vector<edge>vv[maxn];//存储图 
int dis[maxn][11];//记录s到i花了j次零代价机会的最小权值 
bool vis[maxn][11];//表示s到i花了j次零代价机会的状态是否被访问过 
int n,m,k;
inline void add(int u,int v,int w)
{
	vv[u].push_back({v,w});
	vv[v].push_back({u,w});
}
struct node{
	int id,w,cnt;//cnt代表花了多少次零代价机会 
	friend bool operator<(const node&a,const node&b)
	{
		return a.w>b.w; 
	}
};
priority_queue<node>q;
void dij(int s)
{
	for(int i=0;i<n;i++)
	for(int j=0;j<=k;j++)//初始化 
	{
	dis[i][j]=inf;
	vis[i][j]=0;	
	}
	dis[s][0]=0;
	q.push({s,0,0});
	while(!q.empty())
	{
		node p=q.top();
		q.pop();
		int u=p.id;
		int now=p.cnt;
		if(vis[u][now])
		continue;
		vis[u][now]=1;//该状态被访问过 
		for(int i=0;i<vv[u].size();i++)
		{
			int to=vv[u][i].to;
			int w=vv[u][i].w;
			if(k>now&&dis[to][now+1]>dis[u][now])//当前状态使用零代价机会 
			{
				dis[to][now+1]=dis[u][now];
				q.push({to,dis[to][now+1],now+1});
			}
			if(dis[to][now]>dis[u][now]+w)//不使用零代价机会 
			{
				dis[to][now]=dis[u][now]+w;
				q.push({to,dis[to][now],now});
			}
		}
	}
}
int  main()
{
 	ios::sync_with_stdio(false);
 	cin.tie(0);
 	cin>>n>>m>>k;
 	int s,t;
 	cin>>s>>t;
 	for(int i=1;i<=m;i++)
 	{
 		int u,v,w;
 		cin>>u>>v>>w;
 		add(u,v,w);
	}
	dij(s);
	int ans=inf;
	for(int i=0;i<=k;i++)//寻找答案 
	ans=min(ans,dis[t][i]);
	cout<<ans<<'\n';
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值