pandas查看属性和数据

本文介绍了Pandas数据框的属性查看,如shape、dtypes、index等,以及数据概览方法,如head、tail、describe和info。接着详细讲解了如何通过索引运算符、loc和iloc读取和修改数据,讨论了添加和删除行或列的方法,还涵盖了数据串联(concat)、数据集合并(merge)、数据排序和分组聚合(Group by)的操作。
摘要由CSDN通过智能技术生成

10.2  查看其属性、概览

1.属性

df.shape # 查看形状,⾏数和列数
df.dtypes # 查看数据类型
df.index # ⾏标签
df.columns # 列标签
df.values # 对象值,⼆维ndarray数组
df.size # DataFrame中的元素数量
df.ndim # 轴的数量,也指数组的维数
df.empty # DataFrame中没有数据或者任意坐标轴的长度为0,则返回True
df.axes # 返回一个仅以行轴标签和列轴标签为成员的列表
df.T # 行和列转置

2.概览

df.head(10) # 显示头部10⾏,默认5个
df.tail(10) # 显示末尾10⾏,默认5个
df.describe() # 查看数值型列的汇总统计,计数、平均值、标准差、最⼩值、四分位数、最⼤值 includ="object" 查看字符串类型, includ ="all" 查看所有的

df.info() # 查看列索引、数据类型、⾮空计数和内存信息

data = {'name': ['John', 'Mike', 'Mozla', 'Rose', 'David', 'Marry', 'Wansi', 'Sidy', 'Jack', 'Alic'],
        'age': [20, 32, 29, np.nan, 15, 28, 21, 30, 37, 25],
        'gender': [0, 0, 1, 1, 0, 1, 0, 0, 1, 1],
        'isMarried': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 'yes', 'no', 'no']}
label = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
data = pd.DataFrame(data,index=label)
print(data.dtypes)
print(data.index)
print(data.columns)
print(data.values) 
print(data.size)
print(data.ndim)
print(data.empty)
print(data.axes)
print('------head----------')
print(data.head())
print('------tail----------')
print(data.tail())
print('------describe----------')
print(data.describe())
print('------info----------')
print(data.info())


out:
name          object
age          float64
gender         int64
isMarried     object
dtype: object
Index(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'], dtype='object')
Index(['name', 'age', 'gender', 'isMarried'], dtype='object')
[['John' 20.0 0 'yes']
 ['Mike' 32.0 0 'yes']
 ['Mozla' 29.0 1 'no']
 ['Rose' nan 1 'yes']
 ['David' 15.0 0 'no']
 ['Marry' 28.0 1 'no']
 ['Wansi' 21.0 0 'no']
 ['Sidy' 30.0 0 'yes']
 ['Jack' 37.0 1 'no']
 ['Alic' 25.0 1 'no']]
40
2
False
[Index(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'], dtype='object'), Index(['name', 'age', 'gender', 'isMarried'], dtype='object')]
------head----------
    name   age  gender isMarried
a   John  20.0       0       yes
b   Mike  32.0       0       yes
c  Mozla  29.0       1        no
d   Rose   NaN       1       yes
e  David  15.0       0        no
------tail----------
    name   age  gender isMarried
f  Marry  28.0       1        no
g  Wansi  21.0       0        no
h   Sidy  30.0       0       yes
i   Jack  37.0   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值